Rajesh Devangam Bangaru, Kumar Avadhesh
School of Advanced Sciences, VIT-AP University, Inavolu, Amaravathi, 522241, Andhra Pradhesh, India.
Sci Rep. 2025 Aug 28;15(1):31667. doi: 10.1038/s41598-025-15096-4.
Recommender systems have become indispensable tools in various domains, such as e-commerce, entertainment, and social media, for delivering personalized user experiences. Collaborative Filtering (CF) is an essential technique in RS that leverages user similarity patterns to suggest items which align with individual preferences. This study presents an experimental comparative analysis of collaborative filtering-based recommender system methods including memory-based methods (KNN variants), model-based approaches (SVD, SVD++, co-clustering), and techniques based on neural networks (NCF, DeepFM, LightGCN). We conduct a thorough evaluation of these methods on the MovieLens benchmark datasets (100K, 1M, 25M) utilizing various metrics, such as RMSE, MAE, FCP, NDCG@10, Precision@10, Recall@10, and F1@10 Score, aiming to identify the most effective approaches and understand the advantages and disadvantages of each approach. Additionally, we provide detailed insights into the working mechanisms of each model. Our comprehensive analysis reveals the strengths and limitations of each method, offering critical insights for practitioners in selecting the most suitable recommender system technique based on specific requirements and constraints. The findings indicate that, on large datasets, neural and graph-based models achieve measurable improvements in both rating accuracy and top-k ranking tasks, with ranking gains observed upto 15%. Nonetheless, more straightforward approaches (KNN, SVD) continue to hold their ground in smaller datasets or low-resource environments because of their straightforward implementation and clarity in interpretation. The results highlight the importance of achieving a balance between computational expense, scalability, and model intricacy when choosing collaborative filtering techniques for practical implementations of recommender systems. We offer practical insights to assist professionals in selecting models that are suited to particular application needs and data attributes. This research enhances the understanding of collaborative filtering techniques and offers valuable insights for improving the performance of RS across diverse domains.
推荐系统已成为电子商务、娱乐和社交媒体等各个领域中不可或缺的工具,用于提供个性化的用户体验。协同过滤(CF)是推荐系统中的一项基本技术,它利用用户相似性模式来推荐符合个人偏好的物品。本研究对基于协同过滤的推荐系统方法进行了实验性比较分析,包括基于记忆的方法(KNN变体)、基于模型的方法(SVD、SVD++、协同聚类)以及基于神经网络的技术(NCF、DeepFM、LightGCN)。我们利用RMSE、MAE、FCP、NDCG@10、Precision@10、Recall@10和F1@10评分等各种指标,在MovieLens基准数据集(100K、1M、25M)上对这些方法进行了全面评估,旨在确定最有效的方法,并了解每种方法的优缺点。此外,我们还详细介绍了每个模型的工作机制。我们的综合分析揭示了每种方法的优势和局限性,为从业者根据特定要求和限制选择最合适的推荐系统技术提供了关键见解。研究结果表明,在大型数据集上,基于神经和图的模型在评分准确性和top-k排名任务中都取得了显著改进,排名增益高达15%。尽管如此,更直接的方法(KNN、SVD)由于其简单的实现和清晰的解释,在较小的数据集或低资源环境中仍然具有优势。结果强调了在为推荐系统的实际应用选择协同过滤技术时,在计算成本、可扩展性和模型复杂性之间取得平衡的重要性。我们提供了实用的见解,以帮助专业人员选择适合特定应用需求和数据属性的模型。这项研究加深了对协同过滤技术的理解,并为提高跨不同领域的推荐系统性能提供了有价值的见解。