Morales-Durán Nami, León-Buitimea Angel, Álvarez Martínez Roberto, Morones-Ramírez José Rubén
Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León (UANL), San Nicolás de los Garza 66455, Mexico.
Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, Parque de Investigación e Innovación Tecnológica, Apodaca 66628, Mexico.
Antibiotics (Basel). 2025 Aug 20;14(8):841. doi: 10.3390/antibiotics14080841.
Antimicrobial resistance (AMR) poses a significant global health threat, necessitating a deeper understanding of bacterial adaptation mechanisms. This study investigates the genotypic and phenotypic evolutionary trajectories of under meropenem and gentamicin selection, and it benchmarks these findings against florfenicol-evolved strains. Utilizing a downsized, three-layer acrylic modified "Microbial Evolution and Growth Arena (MEGA-plate) system"-scaled to 40 × 50 cm for sterile handling and uniform 37 °C incubation-we tracked adaptation over 9-13 days, enabling real-time visualization of movement across antibiotic gradients. Meropenem exposure elicited pronounced genetic heterogeneity and morphological remodeling (filamentous and circular forms), characteristic of SOS-mediated division arrest and DNA-damage response. In contrast, gentamicin exposure produced a uniform resistance gene profile and minimal shape changes, suggesting reliance on conserved defenses without major morphological adaptation. Comprehensive genomic analysis revealed a core resistome of 22 chromosomal loci shared across all three antibiotics, highlighting potential cross-resistance and the central roles of , , and in coordinating adaptive responses. Gene ontology enrichment underscored the positive regulation of gene expression and intracellular signaling as key themes in resistance evolution. Our findings illustrate the multifaceted strategies employs-combining metabolic flexibility with sophisticated regulatory networks-to withstand diverse antibiotic pressures. This study underscores the utility of the MEGA-plate system in dissecting spatiotemporal AMR dynamics in a controlled yet ecologically relevant context. The divergent responses to meropenem and gentamicin highlight the complexity of resistance development and reinforce the need for integrated, One Health strategies. Targeting shared regulatory hubs may open new avenues for antimicrobial intervention and help preserve the efficacy of existing drugs.
抗菌药物耐药性(AMR)对全球健康构成重大威胁,因此有必要更深入地了解细菌的适应机制。本研究调查了在美罗培南和庆大霉素选择压力下的基因型和表型进化轨迹,并将这些结果与氟苯尼考进化菌株进行了比较。利用一个缩小尺寸的三层丙烯酸改良“微生物进化与生长竞技场(MEGA板)系统”(尺寸为40×50厘米,便于无菌操作和在37°C下均匀培养),我们追踪了9至13天的适应性变化,能够实时观察细菌在抗生素梯度中的移动。美罗培南暴露引发了明显的遗传异质性和形态重塑(丝状和圆形形态),这是SOS介导的分裂停滞和DNA损伤反应的特征。相比之下,庆大霉素暴露产生了一致的耐药基因谱且形态变化最小,表明其依赖保守防御机制,没有重大的形态适应。全面的基因组分析揭示了在所有三种抗生素中共有22个染色体位点的核心耐药组,突出了潜在的交叉耐药性以及 、 和 在协调适应性反应中的核心作用。基因本体富集分析强调基因表达的正调控和细胞内信号传导是耐药进化的关键主题。我们的研究结果表明 采用了多方面的策略——将代谢灵活性与复杂的调控网络相结合——来抵御各种抗生素压力。本研究强调了MEGA板系统在可控但与生态相关的背景下剖析时空AMR动态的实用性。对美罗培南和庆大霉素的不同反应突出了耐药性发展的复杂性,并强化了采用综合“同一健康”策略的必要性。针对共享的调控枢纽可能为抗菌干预开辟新途径,并有助于保持现有药物的疗效。