Suppr超能文献

通过对话实现精准肿瘤学:AI-HOPE-RTK-RAS将临床和基因组见解整合到结直肠癌的RTK-RAS改变中。

Precision Oncology Through Dialogue: AI-HOPE-RTK-RAS Integrates Clinical and Genomic Insights into RTK-RAS Alterations in Colorectal Cancer.

作者信息

Yang Ei-Wen, Waldrup Brigette, Velazquez-Villarreal Enrique

机构信息

PolyAgent, San Francisco, CA 94102, USA.

Department of Integrative Translational Sciences, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.

出版信息

Biomedicines. 2025 Jul 28;13(8):1835. doi: 10.3390/biomedicines13081835.

Abstract

The RTK-RAS signaling cascade is a central axis in colorectal cancer (CRC) pathogenesis, governing cellular proliferation, survival, and therapeutic resistance. Somatic alterations in key pathway genes-including KRAS, NRAS, BRAF, and EGFR-are pivotal to clinical decision-making in precision oncology. However, the integration of these genomic events with clinical and demographic data remains hindered by fragmented resources and a lack of accessible analytical frameworks. To address this challenge, we developed AI-HOPE-RTK-RAS, a domain-specialized conversational artificial intelligence (AI) system designed to enable natural language-based, integrative analysis of RTK-RAS pathway alterations in CRC. : AI-HOPE-RTK-RAS employs a modular architecture combining large language models (LLMs), a natural language-to-code translation engine, and a backend analytics pipeline operating on harmonized multi-dimensional datasets from cBioPortal. Unlike general-purpose AI platforms, this system is purpose-built for real-time exploration of RTK-RAS biology within CRC cohorts. The platform supports mutation frequency profiling, odds ratio testing, survival modeling, and stratified analyses across clinical, genomic, and demographic parameters. Validation included reproduction of known mutation trends and exploratory evaluation of co-alterations, therapy response, and ancestry-specific mutation patterns. : AI-HOPE-RTK-RAS enabled rapid, dialogue-driven interrogation of CRC datasets, confirming established patterns and revealing novel associations with translational relevance. Among early-onset CRC (EOCRC) patients, the prevalence of RTK-RAS alterations was significantly lower compared to late-onset disease (67.97% vs. 79.9%; OR = 0.534, = 0.014), suggesting the involvement of alternative oncogenic drivers. In KRAS-mutant patients receiving Bevacizumab, early-stage disease (Stages I-III) was associated with superior overall survival relative to Stage IV ( = 0.0004). In contrast, BRAF-mutant tumors with microsatellite-stable (MSS) status displayed poorer prognosis despite higher chemotherapy exposure (OR = 7.226, < 0.001; = 0.0000). Among EOCRC patients treated with FOLFOX, RTK-RAS alterations were linked to worse outcomes ( = 0.0262). The system also identified ancestry-enriched noncanonical mutations-including CBL, MAPK3, and NF1-with NF1 mutations significantly associated with improved prognosis ( = 1 × 10). : AI-HOPE-RTK-RAS exemplifies a new class of conversational AI platforms tailored to precision oncology, enabling integrative, real-time analysis of clinically and biologically complex questions. Its ability to uncover both canonical and ancestry-specific patterns in RTK-RAS dysregulation-especially in EOCRC and populations with disproportionate health burdens-underscores its utility in advancing equitable, personalized cancer care. This work demonstrates the translational potential of domain-optimized AI tools to accelerate biomarker discovery, support therapeutic stratification, and democratize access to multi-omic analysis.

摘要

RTK-RAS信号级联是结直肠癌(CRC)发病机制的核心轴,控制着细胞增殖、存活和治疗抗性。关键通路基因(包括KRAS、NRAS、BRAF和EGFR)的体细胞改变对于精准肿瘤学中的临床决策至关重要。然而,这些基因组事件与临床和人口统计学数据的整合仍然受到资源分散和缺乏可访问分析框架的阻碍。为应对这一挑战,我们开发了AI-HOPE-RTK-RAS,这是一个领域专用的对话式人工智能(AI)系统,旨在对CRC中的RTK-RAS通路改变进行基于自然语言的综合分析。AI-HOPE-RTK-RAS采用模块化架构,结合了大语言模型(LLMs)、自然语言到代码的翻译引擎以及在来自cBioPortal的统一多维数据集上运行的后端分析管道。与通用AI平台不同,该系统是专门为在CRC队列中实时探索RTK-RAS生物学而构建的。该平台支持突变频率分析、优势比测试、生存建模以及跨临床、基因组和人口统计学参数的分层分析。验证包括重现已知的突变趋势以及对共改变、治疗反应和特定血统突变模式的探索性评估。AI-HOPE-RTK-RAS实现了对CRC数据集的快速、对话驱动的询问,确认了既定模式并揭示了具有转化相关性的新关联。在早发性CRC(EOCRC)患者中,RTK-RAS改变的患病率明显低于晚发性疾病(67.97%对79.9%;OR = 0.534,P = 0.014),这表明存在其他致癌驱动因素。在接受贝伐单抗治疗的KRAS突变患者中,早期疾病(I-III期)相对于IV期具有更好的总生存期(P = 0.0004)。相比之下,具有微卫星稳定(MSS)状态的BRAF突变肿瘤尽管化疗暴露率较高,但预后较差(OR = 7.226,P < 0.001;P = 0.0000)。在接受FOLFOX治疗的EOCRC患者中,RTK-RAS改变与较差的预后相关(P = 0.0262)。该系统还识别出了特定血统富集的非经典突变,包括CBL、MAPK3和NF1,其中NF1突变与预后改善显著相关(P = 1×10)。AI-HOPE-RTK-RAS是为精准肿瘤学量身定制的新型对话式AI平台的典范,能够对临床和生物学复杂问题进行综合、实时分析。它在RTK-RAS失调中发现经典和特定血统模式的能力,特别是在EOCRC和健康负担不成比例的人群中,突出了其在推进公平、个性化癌症护理方面的效用。这项工作展示了领域优化的AI工具在加速生物标志物发现、支持治疗分层以及使多组学分析民主化方面的转化潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00e1/12383457/8ca0449b4af8/biomedicines-13-01835-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验