Yang Ei-Wen, Waldrup Brigette, Velazquez-Villarreal Enrique
PolyAgent, San Francisco, CA 94102, USA.
Department of Integrative Translational Sciences, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA.
Int J Mol Sci. 2025 Jul 5;26(13):6487. doi: 10.3390/ijms26136487.
The rising incidence of early-onset colorectal cancer (EOCRC), particularly among underrepresented populations, highlights the urgent need for tools that can uncover clinically meaningful, population-specific genomic alterations. The phosphoinositide 3-kinase () pathway plays a key role in tumor progression, survival, and therapeutic resistance in colorectal cancer (CRC), yet its impact in EOCRC remains insufficiently explored. To address this gap, we developed AI-HOPE-PI3K, a conversational artificial intelligence platform that integrates harmonized clinical and genomic data for real-time, natural language-based analysis of pathway alterations. Built on a fine-tuned biomedical LLaMA 3 model, the system automates cohort generation, survival modeling, and mutation frequency comparisons using multi-institutional cBioPortal datasets annotated with clinical variables. AI-HOPE-PI3K replicated known associations and revealed new findings, including worse survival in colon versus rectal tumors harboring alterations, enrichment of mutations in Hispanic/Latino EOCRC patients, and favorable survival outcomes associated with high tumor mutational burden in FOLFIRI-treated patients. The platform also enabled context-specific survival analyses stratified by age, tumor stage, and molecular alterations. These findings support the utility of AI-HOPE-PI3K as a scalable and accessible tool for integrative, pathway-specific analysis, demonstrating its potential to advance precision oncology and reduce disparities in EOCRC through data-driven discovery.
早发性结直肠癌(EOCRC)的发病率不断上升,尤其是在代表性不足的人群中,这凸显了迫切需要能够揭示具有临床意义的、特定人群基因组改变的工具。磷酸肌醇3激酶(PI3K)通路在结直肠癌(CRC)的肿瘤进展、生存和治疗耐药性中起关键作用,但其在EOCRC中的影响仍未得到充分探索。为了填补这一空白,我们开发了AI-HOPE-PI3K,这是一个对话式人工智能平台,它整合了协调的临床和基因组数据,用于基于自然语言的PI3K通路改变的实时分析。该系统基于经过微调的生物医学LLaMA 3模型构建,使用标注了临床变量的多机构cBioPortal数据集自动进行队列生成、生存建模和突变频率比较。AI-HOPE-PI3K复制了已知的关联并揭示了新的发现,包括携带PI3K改变的结肠肿瘤与直肠肿瘤相比生存率更差、西班牙裔/拉丁裔EOCRC患者中PI3K突变的富集,以及在接受FOLFIRI治疗的患者中与高肿瘤突变负担相关的良好生存结果。该平台还能够按年龄、肿瘤分期和分子改变进行特定背景的生存分析。这些发现支持了AI-HOPE-PI3K作为一种可扩展且易于使用的工具用于综合的、通路特异性分析的实用性,证明了其通过数据驱动的发现推进精准肿瘤学并减少EOCRC差异的潜力。