Suppr超能文献

骨质量、种植体长度和加载时机对下颌后牙区应力传递的影响:有限元分析

Effect of Bone Quality, Implant Length, and Loading Timing on Stress Transmission in the Posterior Mandible: A Finite Element Analysis.

作者信息

Has Ladise Ceylin, Orbak Recep

机构信息

Department of Periodontology, Faculty of Dentistry, Atatürk University, 25240 Erzurum, Türkiye.

出版信息

Bioengineering (Basel). 2025 Aug 20;12(8):888. doi: 10.3390/bioengineering12080888.

Abstract

This study aimed to evaluate the biomechanical effects of implant length, mandibular morphology, graft application, loading timing, and force direction on peri-implant stress distribution using finite element analysis (FEA). Five mandibular models representing normal, atrophic, and graft-augmented conditions were constructed. Each model was analyzed with 6 mm and 12 mm Straumann Standard implants under two loading types, vertical (200 N) and oblique (100 N at 30°), across three loading protocols (immediate, early, and delayed). Stress analysis was conducted using von Mises and principal stress criteria, focusing on cortical and trabecular bone, the implant-abutment complex, and the mandibular canal. Under vertical loading, increasing the implant length from 6 mm to 12 mm reduced the maximum tensile stresses in trabecular bone from 0.930 MPa to 0.475 MPa (an approximate 49% decrease). However, oblique loading caused a substantial increase in stresses in all regions, with trabecular compressive stress reaching up to -19.102 MPa and cortical tensile stress up to 179.798 MPa in the atrophic mandible. Graft application significantly reduced peri-implant stresses; for example, maximum compressive stress in the cortical bone decreased from -227.051 MPa in the atrophic model to -13.395 MPa in the grafted model under similar loading conditions. Although the graft donor site was not explicitly modeled, the graft material (Bio-Oss) was anatomically positioned in the posterior mandible to simulate buccolingual augmentation and its biomechanical effects. Stress concentrations around the mandibular canal remained below the 6 MPa threshold for neurovascular injury in all scenarios, indicating a biomechanically safe outcome. These findings indicate that oblique loading and reduced bone volume may compromise implant survival, whereas graft application plays a critical role in mitigating stress levels and enhancing biomechanical stability. The study also emphasizes the importance of considering force direction and bone quality in clinical planning, and highlights the novelty of combining graft simulation with FEA to assess its protective role beyond implant length alone.

摘要

本研究旨在使用有限元分析(FEA)评估种植体长度、下颌骨形态、植骨应用、加载时机和力的方向对种植体周围应力分布的生物力学影响。构建了五个代表正常、萎缩和植骨增强情况的下颌骨模型。每个模型分别使用6毫米和12毫米的Straumann标准种植体,在两种加载类型(垂直加载200牛和倾斜加载30°时100牛)下,按照三种加载方案(即刻、早期和延迟)进行分析。使用冯·米塞斯应力和主应力准则进行应力分析,重点关注皮质骨和松质骨、种植体-基台复合体以及下颌管。在垂直加载下,将种植体长度从6毫米增加到12毫米可使松质骨中的最大拉应力从0.930兆帕降低到0.475兆帕(约降低49%)。然而,倾斜加载会导致所有区域的应力大幅增加,在萎缩下颌骨中,松质骨压应力高达-19.102兆帕,皮质骨拉应力高达179.798兆帕。植骨应用显著降低了种植体周围应力;例如,在相似加载条件下,皮质骨中的最大压应力从萎缩模型中的-227.051兆帕降至植骨模型中的-13.395兆帕。尽管未明确模拟植骨供区,但将植骨材料(Bio-Oss)按解剖位置置于下颌骨后部以模拟颊舌侧骨增量及其生物力学效应。在所有情况下,下颌管周围的应力集中均保持在神经血管损伤的6兆帕阈值以下,表明生物力学结果安全。这些发现表明,倾斜加载和骨量减少可能会损害种植体的存活,而植骨应用在减轻应力水平和增强生物力学稳定性方面起着关键作用。该研究还强调了在临床规划中考虑力的方向和骨质量的重要性,并突出了将植骨模拟与有限元分析相结合以评估其除种植体长度之外的保护作用的新颖性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e4ac/12383843/0fa611bd69d6/bioengineering-12-00888-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验