Wang Juan, Han Xu, Li Qingtai, Qin Meng, Xue Bin, Sun Wenxu, Cao Yi, Sun Wei
Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210008, China.
Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250000, China.
Gels. 2025 Aug 18;11(8):654. doi: 10.3390/gels11080654.
Hydrogels with spatially programmable mechanical properties hold great potential for use in biomedical applications. Inspired by the architecture of the cytoskeleton, we present a strategy for constructing tensegrity-structured hydrogels (TS-Gels) through enzyme-triggered crystal growth to enable precise mechanospatial manipulation. Specifically, alkaline phosphatase (ALP) was covalently anchored to a polyacrylamide (PAAm) hydrogel matrix to catalyze the in situ dephosphorylation of phosphotyrosine precursors, leading to the formation of rigid tyrosine crystals. These crystals functioned as compressive sticks, establishing tensegrity structures within the hydrogel network. By tuning the crystallization kinetics, both the structural morphology and mechanical reinforcement could be precisely controlled. The resulting TS-Gels exhibited significantly enhanced local tensile strength and stiffness, allowing for spatial-mechanical patterning via photo-initiated printing, mold-assisted shaping, and laser engraving. Furthermore, the unique mechanospatial tunability of TS-Gels was demonstrated in tribological surface engineering, underscoring their potential for use in tissue engineering and responsive biomaterials.
具有空间可编程机械性能的水凝胶在生物医学应用中具有巨大的应用潜力。受细胞骨架结构的启发,我们提出了一种通过酶触发晶体生长来构建张拉整体结构水凝胶(TS-Gels)的策略,以实现精确的机械空间操纵。具体而言,碱性磷酸酶(ALP)被共价锚定到聚丙烯酰胺(PAAm)水凝胶基质上,以催化磷酸酪氨酸前体的原位去磷酸化,从而导致刚性酪氨酸晶体的形成。这些晶体起到抗压支柱的作用,在水凝胶网络内建立起张拉整体结构。通过调节结晶动力学,可以精确控制结构形态和机械增强效果。所得的TS-Gels表现出显著增强的局部拉伸强度和刚度,允许通过光引发印刷、模具辅助成型和激光雕刻进行空间机械图案化。此外,TS-Gels独特的机械空间可调性在摩擦学表面工程中得到了证明,突出了它们在组织工程和响应性生物材料中的应用潜力。