Hou Zhaojun, Liu Hui, Cheng Jianchuan, Zhang Qifeng, Tong Zheng
School of Transportation, Southeast University, Nanjing 210018, China.
CCDI (Suzhou) Exploration & Design Consultant Co., Ltd., Suzhou 215007, China.
Materials (Basel). 2025 Aug 11;18(16):3766. doi: 10.3390/ma18163766.
Permittivity measurements of concrete materials benefit from the application of high-frequency electromagnetic waves (HF-EMWs), but they still face the problem of being aleatory and exhibit epistemic uncertainty, originating from multi-phase heterogeneous materials and the limited knowledge of HF-EMW propagation. This limitation restricts the precision of non-destructive testing. This study proposes an evidential regression deep network for conducting permittivity measurements with uncertainty quantification. This method first proposes a finite-difference time-domain (FDTD) model with multi-phase heterogeneous concrete materials to simulate HF-EMW propagation in a concrete sample or structure, obtaining the HF-EMW echo that contains aleatory uncertainties owing to the limited knowledge of wave propagation. A U-net-based model is then proposed to denoise an HF-EMW, where the difference between a couple of observed and denoised HF-EMWs characterizes aleatory uncertainty owing to measurement noise. Finally, a Dempster-Shafer theory-based (DST-based) evidential regression network is proposed to compute permittivity, incorporating the quantification of two types of uncertainty using a Gaussian random fuzzy number (GRFN): a type of fuzzy set that has the characteristics of a Gaussian fuzzy number and a Gaussian random variable. An experiment with 1500 samples indicates that the proposed method measures permittivity with a mean square error of 7.50% and a permittivity uncertainty value of 74.70% in four types of concrete materials. Additionally, the proposed method can quantify the uncertainty in permittivity measurements using a GRFN-based belief measurement interval.
混凝土材料的介电常数测量受益于高频电磁波(HF - EMWs)的应用,但仍面临不确定性问题,表现为随机不确定性且存在认知不确定性,其源于多相异质材料以及对HF - EMW传播的有限了解。这种局限性限制了无损检测的精度。本研究提出一种证据回归深度网络,用于进行具有不确定性量化的介电常数测量。该方法首先提出一个包含多相异质混凝土材料的时域有限差分(FDTD)模型,以模拟HF - EMW在混凝土样本或结构中的传播,得到由于波传播知识有限而包含随机不确定性的HF - EMW回波。然后提出一个基于U - net的模型对HF - EMW进行去噪,其中一对观测到的和去噪后的HF - EMW之间的差异表征了由于测量噪声导致的随机不确定性。最后,提出一个基于Dempster - Shafer理论(基于DST)的证据回归网络来计算介电常数,使用高斯随机模糊数(GRFN)对两种类型的不确定性进行量化:一种具有高斯模糊数和高斯随机变量特征的模糊集。对1500个样本进行的实验表明,该方法在四种类型的混凝土材料中介电常数测量的均方误差为7.50%,介电常数不确定度值为74.70%。此外,该方法可以使用基于GRFN的置信测量区间来量化介电常数测量中的不确定性。