Suppr超能文献

基于证据回归深度网络和高频电磁波的多相非均质混凝土介电常数测量

Permittivity Measurement in Multi-Phase Heterogeneous Concrete Using Evidential Regression Deep Network and High-Frequency Electromagnetic Waves.

作者信息

Hou Zhaojun, Liu Hui, Cheng Jianchuan, Zhang Qifeng, Tong Zheng

机构信息

School of Transportation, Southeast University, Nanjing 210018, China.

CCDI (Suzhou) Exploration & Design Consultant Co., Ltd., Suzhou 215007, China.

出版信息

Materials (Basel). 2025 Aug 11;18(16):3766. doi: 10.3390/ma18163766.

Abstract

Permittivity measurements of concrete materials benefit from the application of high-frequency electromagnetic waves (HF-EMWs), but they still face the problem of being aleatory and exhibit epistemic uncertainty, originating from multi-phase heterogeneous materials and the limited knowledge of HF-EMW propagation. This limitation restricts the precision of non-destructive testing. This study proposes an evidential regression deep network for conducting permittivity measurements with uncertainty quantification. This method first proposes a finite-difference time-domain (FDTD) model with multi-phase heterogeneous concrete materials to simulate HF-EMW propagation in a concrete sample or structure, obtaining the HF-EMW echo that contains aleatory uncertainties owing to the limited knowledge of wave propagation. A U-net-based model is then proposed to denoise an HF-EMW, where the difference between a couple of observed and denoised HF-EMWs characterizes aleatory uncertainty owing to measurement noise. Finally, a Dempster-Shafer theory-based (DST-based) evidential regression network is proposed to compute permittivity, incorporating the quantification of two types of uncertainty using a Gaussian random fuzzy number (GRFN): a type of fuzzy set that has the characteristics of a Gaussian fuzzy number and a Gaussian random variable. An experiment with 1500 samples indicates that the proposed method measures permittivity with a mean square error of 7.50% and a permittivity uncertainty value of 74.70% in four types of concrete materials. Additionally, the proposed method can quantify the uncertainty in permittivity measurements using a GRFN-based belief measurement interval.

摘要

混凝土材料的介电常数测量受益于高频电磁波(HF - EMWs)的应用,但仍面临不确定性问题,表现为随机不确定性且存在认知不确定性,其源于多相异质材料以及对HF - EMW传播的有限了解。这种局限性限制了无损检测的精度。本研究提出一种证据回归深度网络,用于进行具有不确定性量化的介电常数测量。该方法首先提出一个包含多相异质混凝土材料的时域有限差分(FDTD)模型,以模拟HF - EMW在混凝土样本或结构中的传播,得到由于波传播知识有限而包含随机不确定性的HF - EMW回波。然后提出一个基于U - net的模型对HF - EMW进行去噪,其中一对观测到的和去噪后的HF - EMW之间的差异表征了由于测量噪声导致的随机不确定性。最后,提出一个基于Dempster - Shafer理论(基于DST)的证据回归网络来计算介电常数,使用高斯随机模糊数(GRFN)对两种类型的不确定性进行量化:一种具有高斯模糊数和高斯随机变量特征的模糊集。对1500个样本进行的实验表明,该方法在四种类型的混凝土材料中介电常数测量的均方误差为7.50%,介电常数不确定度值为74.70%。此外,该方法可以使用基于GRFN的置信测量区间来量化介电常数测量中的不确定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aeb2/12387929/e2e288508f46/materials-18-03766-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验