Suppr超能文献

利用图神经网络和可解释人工智能研究合金中的结构-性能关联

Structure-Property Linkage in Alloys Using Graph Neural Network and Explainable Artificial Intelligence.

作者信息

Rhoads Benjamin, Hogue Abigail, Kotthoff Lars, Choudhury Samrat

机构信息

Department of Mechanical Engineering, University of Mississippi, University, MS 38677, USA.

Department of Electrical Engineering and Computer Science, University of Wyoming, Laramie, WY 82071, USA.

出版信息

Materials (Basel). 2025 Aug 12;18(16):3778. doi: 10.3390/ma18163778.

Abstract

Deep learning tools have recently shown significant potential for accelerating the prediction of microstructure-property linkage in materials. While deep neural networks like convolution neural networks (CNNs) can extract physics information from 3D microstructure images, they often require a large network architecture and substantial training time. In this research, we trained a graph neural network (GNN) using phase field generated microstructures of Ni-Al alloys to predict the evolution of mechanical properties. We found that a single GNN is capable of accurately predicting the strengthening of Ni-Al alloys with microstructures of varying sizes and dimensions, which cannot otherwise be done with a CNN. Additionally, GNN requires significantly less GPU utilization than CNN and offers more interpretable explanation of predictions using saliency analysis as features are manually defined in the graph. We also utilize explainable artificial intelligence tool Bayesian Inference to determine the coefficients in the power law equation that governs coarsening of precipitates. Overall, our work demonstrates the ability of the GNN to accurately and efficiently extract relevant information from material microstructures without having restrictions on microstructure size or dimension and offers an interpretable explanation.

摘要

深度学习工具最近在加速材料微观结构 - 性能关联预测方面显示出巨大潜力。虽然像卷积神经网络(CNN)这样的深度神经网络可以从3D微观结构图像中提取物理信息,但它们通常需要大型网络架构和大量训练时间。在本研究中,我们使用相场生成的镍铝合金微观结构训练了一个图神经网络(GNN),以预测力学性能的演变。我们发现,单个GNN能够准确预测具有不同尺寸和维度微观结构的镍铝合金的强化情况,而这是CNN无法做到的。此外,与CNN相比,GNN所需的GPU利用率显著更低,并且由于图中的特征是手动定义的,因此使用显著性分析对预测结果提供了更具可解释性的说明。我们还利用可解释人工智能工具贝叶斯推理来确定控制析出相粗化的幂律方程中的系数。总体而言,我们的工作证明了GNN能够准确、高效地从材料微观结构中提取相关信息,而不受微观结构尺寸或维度的限制,并提供了可解释的说明。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a5be/12387502/8fb34670de77/materials-18-03778-g0A1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验