Melo Natália Z P De, Bessa Stephany C F, Vitoriano Jussier O, Moura Carlos E B, Pessoa Rodrigo S, Alves-Junior Clodomiro
Programa de Pós-Graduação em Ciência da Saúde, Universidade Federal do Rio Grande do Norte, Natal 59012-570, RN, Brazil.
Programa de Pós-Graduação em Ciência e Engenharia de Materiais, Universidade Federal Rural do Semi-Árido, Mossoró 59625-900, RN, Brazil.
Materials (Basel). 2025 Aug 13;18(16):3792. doi: 10.3390/ma18163792.
This study investigates a novel approach based on micro-pulse plasma electrolytic oxidation (μPPEO), aiming to improve the control over key parameters such as the Ca/P ratio, the formation of anatase and rutile phases, and the porosity of titanium surfaces-factors that are critical for enhancing bioactivity. By employing electrical micro-pulses with widths of 50 μs or 100 μs, our aim was to restrict the discharge time and subsequent surface/electrolyte reactions. The results demonstrate that μPPEO-treated surfaces exhibit uniform pore diameters, a Ca/P ratio of approximately 1.67, and the better control of anatase/rutile formation. The μPPEO treatment successfully produced hydrophilic surfaces, with the 6Ti50 sample displaying the highest polar component of surface energy. Notably, this sample was the only one to support cell viability comparable to that of the polystyrene surface on the 24-well plate, emphasizing its strong potential for clinical applications. Across all treated surfaces, OFCOL osteoblasts displayed a spindle-like morphology with elongated filopodia, suggesting favorable cell interactions and adaptability to the treated surfaces. This study underscores the promise of PPEO as a valuable technique for biomedical applications, particularly in controlling and optimizing dental implant surfaces.
本研究探讨了一种基于微脉冲等离子体电解氧化(μPPEO)的新方法,旨在更好地控制关键参数,如钙磷比、锐钛矿相和金红石相的形成以及钛表面的孔隙率,这些因素对于增强生物活性至关重要。通过采用宽度为50 μs或100 μs的电微脉冲,我们旨在限制放电时间及随后的表面/电解质反应。结果表明,经μPPEO处理的表面呈现出均匀的孔径、约为1.67的钙磷比,并且对锐钛矿/金红石的形成有更好的控制。μPPEO处理成功制备出亲水性表面,6Ti50样品表现出最高的表面能极性成分。值得注意的是,该样品是唯一能支持与24孔板上聚苯乙烯表面相当的细胞活力的样品,突出了其在临床应用中的强大潜力。在所有处理过的表面上,OFCOL成骨细胞呈现出带有细长丝状伪足的纺锤状形态,表明细胞与处理过的表面之间具有良好的相互作用和适应性。本研究强调了PPEO作为一种用于生物医学应用的宝贵技术的前景,特别是在控制和优化牙种植体表面方面。