Suppr超能文献

骨结合的三维理论:材料、表面形貌及时间作为骨与种植体结合的相互依存决定因素

The 3D theory of osseointegration: material, topography, and time as interdependent determinants of bone-implant integration.

作者信息

Ogawa Takahiro, Hirota Makoto, Shibata Rune, Matsuura Takanori, Komatsu Keiji, Saruta Juri, Att Wael

机构信息

Weintraub Center for Reconstructive Biotechnology, UCLA School of Dentistry, Los Angeles, CA, USA.

Division of Regenerative and Reconstructive Sciences, UCLA School of Dentistry, Los Angeles, CA, USA.

出版信息

Int J Implant Dent. 2025 Aug 2;11(1):49. doi: 10.1186/s40729-025-00639-1.

Abstract

Despite widespread clinical success of dental implants, several fundamental questions remain unresolved: How does osseointegration-a biological phenomenon distinct from conventional bone healing-actually occur? Why does bone-implant contact never reach 100%? Why has there been minimal innovation in commercial implant surfaces over the past three decades? And why has the failure rate plateaued at around 8%? This review introduces the 3D Theory of Osseointegration, which conceptualizes implant integration as governed by three interdependent and dynamic determinants: material composition (Dimension 1), surface topography/roughness (Dimension 2), and time, which critically influences the physicochemical properties of implant surfaces (Dimension 3). For Dimension 1, the biocompatibility of various metals has been extensively studied, with commercially pure titanium and titanium alloys firmly established as the gold standard for dental implants. Dimension 3 underscores the long-overlooked impact of time-specifically, the biological aging of titanium surfaces caused by hydrocarbon accumulation and the loss of hydrophilicity-which significantly diminishes osteoconductivity. Importantly, recent studies have uncovered that this time-dependent degradation, once seen as an inevitable limitation, is in fact fully reversible. UV photofunctionalization restores surface hydrophilicity and removes hydrocarbon contaminants, revitalizing the bioactivity of titanium. This breakthrough not only resolves a long-standing barrier to optimal osseointegration but also establishes quantitative thresholds for key physicochemical parameters-such as carbon content and surface wettability. As a result, Dimensions 1 and 3-material and physicochemical properties-are approaching maturity in terms of optimization. In contrast, Dimension 2, surface topography, remains relatively underdeveloped despite decades of research and the clinical success of microrough surfaces. Now that UV photofunctionalization effectively mitigates biological aging and unlocks the full physicochemical potential of implant surfaces, the advancement of surface topography becomes the next critical frontier. This review critically examines each dimension, their interactions, and the limitations of current topographical design. It advocates for a shift from empirical to mechanism-driven engineering of implant surfaces and underscores the need for intentional synergy across all three dimensions. The 3D Theory of Osseointegration offers a structured framework to inform future implant design and research, aiming to better control and optimize the biological process of integration while acknowledging the complexities that still remain to be fully addressed.

摘要

尽管牙种植体在临床上取得了广泛成功,但仍有几个基本问题尚未解决:骨结合——一种不同于传统骨愈合的生物学现象——究竟是如何发生的?为什么骨与种植体的接触从未达到100%?在过去三十年里,为什么商业种植体表面几乎没有创新?为什么失败率稳定在8%左右?本综述介绍了骨结合的三维理论,该理论将种植体整合概念化为由三个相互依存且动态的决定因素所支配:材料成分(维度1)、表面形貌/粗糙度(维度2)以及时间,时间对种植体表面的物理化学性质有至关重要的影响(维度3)。对于维度1,各种金属的生物相容性已得到广泛研究,商业纯钛和钛合金已牢固确立为牙种植体的金标准。维度3强调了长期被忽视的时间影响——具体而言,碳氢化合物积累和亲水性丧失导致钛表面的生物老化——这显著降低了骨传导性。重要的是,最近的研究发现,这种随时间的降解,曾经被视为不可避免的限制,实际上是完全可逆的。紫外线光功能化可恢复表面亲水性并去除碳氢化合物污染物,恢复钛的生物活性。这一突破不仅解决了长期以来实现最佳骨结合的障碍,还为关键物理化学参数(如碳含量和表面润湿性)建立了定量阈值。因此,维度1和维度3——材料和物理化学性质——在优化方面正接近成熟。相比之下,尽管经过数十年研究且微粗糙表面在临床上取得了成功,但维度2,即表面形貌,仍相对不发达。既然紫外线光功能化有效地减轻了生物老化并释放了种植体表面的全部物理化学潜力,那么表面形貌的进展就成为下一个关键前沿领域。本综述批判性地审视了每个维度、它们之间的相互作用以及当前形貌设计的局限性。它主张从经验性的种植体表面工程转向基于机制的工程,并强调在所有三个维度上有意协同的必要性。骨结合的三维理论提供了一个结构化框架,为未来的种植体设计和研究提供指导,旨在更好地控制和优化整合的生物学过程,同时认识到仍有待充分解决的复杂性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a2fc/12317956/87004264160c/40729_2025_639_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验