Chyliński Filip, Kupisz Piotr, Więch Przemysław, Brunarski Lesław
Instytut Techniki Budowlanej, Filtrowa Str. 1, 00-611 Warsaw, Poland.
Materials (Basel). 2025 Aug 17;18(16):3851. doi: 10.3390/ma18163851.
This study presents a novel approach to determine the composition of masonry mortars and their types from cement, lime, and cement-lime using an artificial neural network (ANN). It also allows the preparation of mortar recipes for the conservation of historical masonry objects with properties similar to the original ones, but using currently available raw materials. An ANN was trained using a set of cement, lime, and cement-lime mortars with known compositions. The properties chosen for the ANN's analysis included total porosity, specific density, insoluble residue content, silicone (SiO) content, calcium (CaO) content, Si/Ca ratio in grout, and compressive strength. The use of ANNs allows for the determination of mortar composition with a validation error of less than 5% and a method of classification of the type of mortar that gives correct answers in more than 93% of cases, proving the usefulness of ANNs in determining the type and composition of masonry mortars relevant for the conservation of historical masonry structures.
本研究提出了一种新颖的方法,利用人工神经网络(ANN)从水泥、石灰和水泥石灰中确定砖石砂浆的成分及其类型。它还能够制备用于保护历史砖石文物的砂浆配方,这些配方具有与原始配方相似的性能,但使用的是目前可得的原材料。使用一组已知成分的水泥、石灰和水泥石灰砂浆对人工神经网络进行了训练。人工神经网络分析所选用的性能包括总孔隙率、比重、不溶残渣含量、硅(SiO)含量、钙(CaO)含量、灌浆中的硅钙比以及抗压强度。使用人工神经网络能够以小于5%的验证误差确定砂浆成分,并且能够对砂浆类型进行分类,在超过93%的情况下给出正确答案,证明了人工神经网络在确定与历史砖石结构保护相关的砖石砂浆类型和成分方面的实用性。