Nidadavolu Eshwara, Mikulics Martin, Wolff Martin, Ebel Thomas, Willumeit-Römer Regine, Zeller-Plumhoff Berit, Mayer Joachim, Hardtdegen Hilde Helen
Helmholtz-Zentrum Hereon GmbH, Max-Planck Straße 1, 21502 Geesthacht, Germany.
Ernst-Ruska-Centre (ER-C-2), Forschungszentrum Jülich, 52425 Jülich, Germany.
Materials (Basel). 2025 Aug 18;18(16):3873. doi: 10.3390/ma18163873.
In this study, a correlative approach using Raman spectroscopy and scanning electron microscopy (SEM) is introduced to meet the challenges of identifying impurities, especially carbon-related compounds in metal injection-molded (MIM) Mg-0.6Ca specimens designed for biomedical applications. This study addresses, for the first time, the issue of carbon residuals in the binder-based powder metallurgy (PM) processing of Mg-0.6Ca materials. A deeper understanding of the material microstructure is important to assess the microstructure homogeneity at submicron levels as this later affects material degradation and biocompatibility behavior. Both spectroscopic and microscopic techniques used in this study respond to the concerns of secondary phase distributions and their possible stoichiometry. Our micro-Raman measurements performed over a large area reveal Raman modes at ~1370 cm and ~1560 cm, which are ascribed to the elemental carbon, and at ~1865 cm, related to C≡C stretching modes. Our study found that these carbonaceous residuals/contaminations in the material microstructure originated from the polymeric binder components used in the MIM fabrication route, which then react with the base material components, including impurities, at elevated thermal debinding and sintering temperatures. Additionally, using evidence from the literature on thermal carbon cracking, the presence of both free carbon and calcium carbide phases is inferred in the sintered Mg-0.6Ca material in addition to the MgCa, oxide, and silicate phases. This first-of-its-kind correlative characterization approach for PM-processed Mg biomaterials is fast, non-destructive, and provides deeper knowledge on the formed residual carbonaceous phases. This is crucial in Mg alloy development strategies to ensure reproducible in vitro degradation and cell adhesion characteristics for the next generation of biocompatible magnesium materials.
在本研究中,引入了一种结合拉曼光谱和扫描电子显微镜(SEM)的相关方法,以应对识别杂质的挑战,特别是在用于生物医学应用的金属注射成型(MIM)Mg-0.6Ca试样中与碳相关的化合物。本研究首次解决了Mg-0.6Ca材料基于粘结剂的粉末冶金(PM)加工过程中的碳残留问题。深入了解材料微观结构对于评估亚微米级别的微观结构均匀性很重要,因为这随后会影响材料的降解和生物相容性行为。本研究中使用的光谱和显微镜技术都回应了第二相分布及其可能的化学计量的问题。我们在大面积上进行的显微拉曼测量揭示了在1370 cm和1560 cm处的拉曼模式,它们归因于元素碳,以及在~1865 cm处与C≡C拉伸模式相关的模式。我们的研究发现,材料微观结构中的这些含碳残留物/污染物源自MIM制造路线中使用的聚合物粘结剂成分,然后在升高的热脱脂和烧结温度下与包括杂质在内的基础材料成分发生反应。此外,利用文献中关于热碳裂解的证据,除了MgCa、氧化物和硅酸盐相之外,在烧结的Mg-0.6Ca材料中推断出游离碳和碳化钙相的存在。这种针对PM加工的Mg生物材料的首创相关表征方法快速、无损,并提供了关于形成的残留碳质相的更深入知识。这对于Mg合金开发策略至关重要,以确保下一代生物相容性镁材料具有可重复的体外降解和细胞粘附特性。