Yin Qian-Zhi, Bian Jiapeng, Fan Yin
School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China.
Polymers (Basel). 2025 Aug 19;17(16):2245. doi: 10.3390/polym17162245.
Most numerical studies on carbon fiber-reinforced polymer (CFRP) lightning damages fail to account for delamination, a factor that plays a significant role in the subsequent analysis of residual strength. This study establishes an electro-thermo-mechanical coupled numerical model incorporating delamination effects to predict lightning-induced damage in carbon fiber-reinforced plastic (CFRP) composites. Subsequently, parametric investigations evaluate the influence of varying input loads and stacking sequences on interlaminar pyrolysis and delamination damage, with damage assessment quantitatively conducted based on simulated post-strike uniaxial ultimate compressive loads. Post-strike uniaxial compressive strength reduction with cohesive elements is 28.91%, demonstrating closer alignment with experimental reduction (36.72%) than the 21.12% reduction predicted by the interlaminar-effect-neglecting model. Under combined thermal expansion and shockwave overpressure, the 28.91% compressive strength reduction demonstrates closer alignment with the experimental 36.72% reduction than the 25.13% reduction observed under isolated shockwave overpressure. The results highlight the critical role of thermal delamination in compressive strength reduction, with distinct waveform-dependent mechanisms: under C-waveform lightning currents, arc thermal effects cannot be neglected; D-waveform strikes exhibit predominant contributions from impact loading to delamination damage, with thermally driven delamination likewise pronounced. Increased current amplitude correlates with amplified mechanical damage severity, while premature symmetry in ply stacking sequences exacerbates compressive performance degradation. This work enhances multi-physics modeling fidelity by bridging thermal delamination and mechanical degradation pathways, offering foundational insights for optimizing lightning strike resistance in advanced aerospace composite systems.
大多数关于碳纤维增强聚合物(CFRP)雷击损伤的数值研究都没有考虑分层现象,而这一因素在后续的残余强度分析中起着重要作用。本研究建立了一个考虑分层效应的电热机械耦合数值模型,以预测碳纤维增强塑料(CFRP)复合材料中的雷击损伤。随后,通过参数研究评估了不同输入载荷和堆叠顺序对层间热解和分层损伤的影响,并基于模拟的雷击后单轴极限压缩载荷对损伤进行了定量评估。采用粘结单元时,雷击后单轴抗压强度降低了28.91%,与实验降低值(36.72%)的吻合度比忽略层间效应的模型预测的21.12%降低值更高。在热膨胀和冲击波超压共同作用下,28.91%的抗压强度降低值与实验值36.72%的吻合度比在孤立冲击波超压下观察到的25.13%降低值更高。结果突出了热分层在抗压强度降低中的关键作用,其机制与波形有关:在C波形雷击电流作用下,电弧热效应不可忽略;D波形雷击时,冲击载荷对分层损伤的贡献占主导,热驱动分层同样明显。电流幅值增加与机械损伤严重程度增大相关,而层合板堆叠顺序中的过早对称性会加剧抗压性能的退化。这项工作通过连接热分层和机械退化途径提高了多物理场建模的保真度,为优化先进航空航天复合系统的雷击抗性提供了基础见解。