Suppr超能文献

基于机器学习方法的碳纤维增强聚合物层压板雷击损伤识别与剩余强度预测

Identification of Lighting Strike Damage and Prediction of Residual Strength of Carbon Fiber-Reinforced Polymer Laminates Using a Machine Learning Approach.

作者信息

Dong Rui-Zi, Fan Yin, Bian Jiapeng, Chen Zhili

机构信息

School of Aeronautics and Astronautics, Shanghai Jiao Tong University, Shanghai 200240, China.

出版信息

Polymers (Basel). 2025 Jan 13;17(2):180. doi: 10.3390/polym17020180.

Abstract

Due to the complex and uncertain physics of lightning strike on carbon fiber-reinforced polymer (CFRP) laminates, conventional numerical simulation methods for assessing the residual strength of lightning-damaged CFRP laminates are highly time-consuming and far from pretty. To overcome these challenges, this study proposes a new prediction method for the residual strength of CFRP laminates based on machine learning. A diverse dataset is acquired and augmented from photographs of lightning strike damage areas, C-scan images, mechanical performance data, layup details, and lightning current parameters. Original lightning strike images, preprocessed with the Sobel operator for edge enhancement, are fed into a UNet neural network using four channels to detect damaged areas. These identified areas, along with lightning parameters and layup details, are inputs for a neural network predicting the damage depth in CFRP laminates. Due to its close relation to residual strength, damage depth is then used to estimate the residual strength of lightning-damaged CFRP laminates. The effectiveness of the current method is confirmed, with the mean Intersection over Union (mIoU) achieving over 93% for damage identification, the Mean Absolute Error (MAE) reducing to 5.4% for damage depth prediction, and the Mean Relative Error (MRE) reducing to 7.6% for residual strength prediction, respectively.

摘要

由于碳纤维增强聚合物(CFRP)层压板雷击物理过程的复杂性和不确定性,用于评估雷击损伤CFRP层压板残余强度的传统数值模拟方法耗时极长且效果不佳。为克服这些挑战,本研究提出一种基于机器学习的CFRP层压板残余强度预测新方法。从雷击损伤区域照片、C扫描图像、力学性能数据、铺层细节和雷电流参数中获取并扩充了一个多样化的数据集。经Sobel算子预处理以增强边缘的原始雷击图像通过四个通道输入到UNet神经网络中,以检测损伤区域。这些识别出的区域,连同雷击参数和铺层细节,作为神经网络预测CFRP层压板损伤深度的输入。由于损伤深度与残余强度密切相关,随后用损伤深度来估计雷击损伤CFRP层压板的残余强度。当前方法的有效性得到了证实,损伤识别的平均交并比(mIoU)达到93%以上,损伤深度预测的平均绝对误差(MAE)降至5.4%,残余强度预测的平均相对误差(MRE)降至7.6%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f634/11768333/c1d668f86bbf/polymers-17-00180-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验