文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于表面增强拉曼光谱技术快速检测叶菜类蔬菜中的农药残留

Rapid Detection of Pesticide Residues in Leaf Vegetables by SERS Technology.

作者信息

Peng Fang, Huang Shuanggen, Chen Qi, Tong Ni, Wu Yan

机构信息

School of Computer Science & Engineering, Jiangxi Agricultural University, Nanchang 330045, China.

Key Laboratory of Modern Agricultural Equipment, Jiangxi Agricultural University, Nanchang 330045, China.

出版信息

Sensors (Basel). 2025 Aug 8;25(16):4912. doi: 10.3390/s25164912.


DOI:10.3390/s25164912
PMID:40871775
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12390197/
Abstract

Organophosphate pesticides, fungicides, and neonicotinoid insecticides are frequently employed in the cultivation and production of leafy vegetables. The conventional detection methods for these pesticides rely on chromatographic techniques, which are characterized by good precision and sensitivity. Nevertheless, these methods suffer from drawbacks such as complex sample pretreatment, prolonged detection times, and high costs, hindering the realization of on-site detection. This paper introduces a detection method based on surface-enhanced Raman spectroscopy (SERS) for the quantitative and qualitative analysis of pesticide residues in leafy vegetables. Gold nanoparticles (AuNPs) were meticulously synthesized to serve as the substrate for enhancing Raman signals. The average particle size was approximately 50 nm, and a significant absorption peak appeared at 536 nm. The density functional theory (DFT) with the B3LYP/6-311G was utilized to calculate the theoretical Raman spectra of the pesticides. The characteristic Raman peaks of the pesticides were selected as calibration peaks to establish calibration equations relating the concentration of pesticide residues to the intensity of these calibration peaks. By substituting the intensity of the calibration peak corresponding to the lowest detectable limit in the SERS spectra into the calibration equation, the quantitative detection limit was calculated. The study revealed that the detection limit for phosmet residues in Chinese cabbage could be was below 0.5 mg/kg, with an R of 0.93363, a standard deviation ranging from 3.87% to 8.56%, and recovery rates between 94.67% and 112.89%. For thiabendazole residues in water spinach, the detection limit could be below 1 mg/kg, with an R of 0.98291, a standard deviation of between 1.71% and 9.29%, and recovery rates ranging from 87.67% to 107.83%. In the case of acetamiprid residues in pakchoi, the detection limit could also be below 1 mg/kg, with an R of 0.95332, a standard deviation of between 4.00% and 9.10%, and recovery rates ranging from 90.67% to 113.75%. These findings demonstrate that the SERS-based detection method for the semi-quantitative and qualitative analysis of pesticide residues in leafy vegetables is an effective approach, enabling rapid and reliable detection of pesticide residues in leafy vegetables.

摘要

有机磷酸酯类农药、杀菌剂和新烟碱类杀虫剂常用于叶菜类蔬菜的种植和生产中。这些农药的传统检测方法依赖于色谱技术,其特点是精密度和灵敏度良好。然而,这些方法存在诸如样品预处理复杂、检测时间长和成本高的缺点,阻碍了现场检测的实现。本文介绍了一种基于表面增强拉曼光谱(SERS)的检测方法,用于叶菜类蔬菜中农药残留的定量和定性分析。精心合成了金纳米颗粒(AuNPs)作为增强拉曼信号的基底。平均粒径约为50 nm,在536 nm处出现明显的吸收峰。利用B3LYP/6 - 311G密度泛函理论(DFT)计算农药的理论拉曼光谱。选择农药的特征拉曼峰作为校准峰,建立农药残留浓度与这些校准峰强度之间的校准方程。将SERS光谱中对应最低检测限的校准峰强度代入校准方程,计算定量检测限。研究表明,大白菜中稻丰散残留的检测限可低于0.5 mg/kg,R为0.93363,标准偏差在3.87%至8.56%之间,回收率在94.67%至112.89%之间。对于蕹菜中噻菌灵残留,检测限可低于1 mg/kg,R为0.98291,标准偏差在1.71%至9.29%之间,回收率在87.67%至107.83%之间。对于小白菜中啶虫脒残留,检测限也可低于1 mg/kg,R为0.95332,标准偏差在4.00%至9.10%之间,回收率在90.67%至113.75%之间。这些结果表明,基于SERS的叶菜类蔬菜中农药残留半定量和定性分析检测方法是一种有效的方法,能够快速、可靠地检测叶菜类蔬菜中的农药残留。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a44/12390197/78b816e12c16/sensors-25-04912-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a44/12390197/178d2ad48ef2/sensors-25-04912-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a44/12390197/1f0233801a64/sensors-25-04912-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a44/12390197/511281afa72d/sensors-25-04912-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a44/12390197/66c02b750ca2/sensors-25-04912-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a44/12390197/13317ecf3148/sensors-25-04912-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a44/12390197/0aa1077682ba/sensors-25-04912-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a44/12390197/bc89c4798d69/sensors-25-04912-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a44/12390197/a3b792f8c52f/sensors-25-04912-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a44/12390197/7915e6e35235/sensors-25-04912-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a44/12390197/78b816e12c16/sensors-25-04912-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a44/12390197/178d2ad48ef2/sensors-25-04912-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a44/12390197/1f0233801a64/sensors-25-04912-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a44/12390197/511281afa72d/sensors-25-04912-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a44/12390197/66c02b750ca2/sensors-25-04912-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a44/12390197/13317ecf3148/sensors-25-04912-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a44/12390197/0aa1077682ba/sensors-25-04912-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a44/12390197/bc89c4798d69/sensors-25-04912-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a44/12390197/a3b792f8c52f/sensors-25-04912-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a44/12390197/7915e6e35235/sensors-25-04912-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7a44/12390197/78b816e12c16/sensors-25-04912-g010.jpg

相似文献

[1]
Rapid Detection of Pesticide Residues in Leaf Vegetables by SERS Technology.

Sensors (Basel). 2025-8-8

[2]
Ultra-thin CoAg-MOFNs for SERS for the rapid analysis of imidacloprid pesticide residues in citrus.

Anal Methods. 2025-6-19

[3]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[4]
Preparation of a phenylcarbamoylethylenediureido-β-cyclodextrin-bonded phase for enantioseparation and determination of cyproconazole, metconazole and other triazole fungicides in fruits and vegetables by high-performance liquid chromatography.

J Chromatogr A. 2025-9-27

[5]
Detection of thiram residues on apple surface by surface enhanced Raman spectroscopy with modified paper substrate.

Food Chem. 2025-11-1

[6]
A portable kit for high-throughput determination of methyl parathion on vegetable surface by integrating solid-phase microextraction and surface-enhanced Raman spectroscopy.

Mikrochim Acta. 2025-6-20

[7]
Surface-Enhanced Raman Spectroscopy (SERS) Method for Rapid Detection of Neomycin and Chloramphenicol Residues in Chicken Meat.

Sensors (Basel). 2025-6-24

[8]
Development of a Universal Model for In Situ Detection of Pymetrozine Residues on Cabbage and Chinese Cabbage by Surface-Enhanced Raman Spectroscopy.

J Agric Food Chem. 2025-6-25

[9]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[10]
Are Current Survival Prediction Tools Useful When Treating Subsequent Skeletal-related Events From Bone Metastases?

Clin Orthop Relat Res. 2024-9-1

本文引用的文献

[1]
Novel electrochemiluminescence platform utilizing AuNPs@Uio-66-NH bridged luminescent substrates and aptamers for the detection of pesticide residues in Chinese herbal medicines.

Talanta. 2025-1-1

[2]
Rapid and ultrasensitive detection of thiram and carbaryl pesticide residues in fruit juices using SERS coupled with the chemometrics technique.

Food Chem. 2024-11-1

[3]
A tailored dual core-shell magnetic SERS substrate with precise shell-thickness control for trace organophosphorus pesticides residues detection.

Spectrochim Acta A Mol Biomol Spectrosc. 2024-8-5

[4]
Research Status in the Use of Surface-Enhanced Raman Scattering (SERS) to Detect Pesticide Residues in Foods and Plant-Derived Chinese Herbal Medicines.

Int J Anal Chem. 2024-1-12

[5]
A highly effective SERS platform formed by the fabrication of Ag@ZIF-8@Au nanoparticles for rapid detection of acetamiprid in environment.

Spectrochim Acta A Mol Biomol Spectrosc. 2024-3-5

[6]
A durian-shaped multilayer core-shell SERS substrate for flow magnetic detection of pesticide residues on foods.

Food Chem. 2024-2-1

[7]
Quantitative determination and removal of pesticide residues in fresh vegetables and fruit products by LC-MS/MS and GC-MS/MS.

Environ Monit Assess. 2023-1-7

[8]
Flexible 2D nanocellulose-based SERS substrate for pesticide residue detection.

Carbohydr Polym. 2022-2-1

[9]
Drop coating deposition Raman (DCDR) spectroscopy of contaminants.

Spectrochim Acta A Mol Biomol Spectrosc. 2021-12-5

[10]
Detection of Residual Pesticides in Foods.

Foods. 2021-5-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索