Akor Peter, Enemali Godwin, Muhammad Usman, Crowley Jane, Desmulliez Marc, Larijani Hadi
School of Science and Engineering, Glasgow Caledonian University, Glasgow G4 0BA, UK.
Medical Device Manufacturing Center (MDMC), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK.
Sensors (Basel). 2025 Aug 11;25(16):4974. doi: 10.3390/s25164974.
This paper presents the development and validation of a cost-effective 3D-printed conductive phantom for EEG sensing system validation that achieves 85% cost reduction (48.10 vs. 300-500) and 48-hour fabrication time while providing consistent electrical properties suitable for standardized electrode testing. The phantom was fabricated using conductive PLA filament in a two-component design with a conductive upper section and a non-conductive base for structural support. Comprehensive validation employed three complementary approaches: DC resistance measurements (821-1502 Ω), complex impedance spectroscopy at 100 Hz across anatomical regions (3.01-6.4 kΩ with capacitive behavior), and 8-channel EEG system testing (5-11 kΩ impedance range). The electrical characterization revealed spatial heterogeneity and consistent electrical properties suitable for comparative electrode evaluation and EEG sensing system validation applications. To establish context, we analyzed six existing phantom technologies including commercial injection-molded phantoms, saline solutions, hydrogels, silicone models, textile-based alternatives, and multi-material implementations. This analysis identifies critical accessibility barriers in current technologies, particularly cost constraints (5000-20,000 tooling) and extended production timelines that limit widespread adoption. The validated 3D-printed phantom addresses these limitations while providing appropriate electrical properties for standardized EEG electrode testing. The demonstrated compatibility with clinical EEG acquisition systems establishes the phantom's suitability for electrode performance evaluation and multi-channel system validation as a standardized testing platform, ultimately contributing to democratized access to EEG sensing system validation capabilities for broader research communities.
本文介绍了一种用于脑电图(EEG)传感系统验证的经济高效的3D打印导电体模的开发与验证。该体模实现了85%的成本降低(从300 - 500美元降至48.10美元),制作时间为48小时,同时提供了适用于标准化电极测试的一致电学特性。该体模采用导电聚乳酸(PLA)细丝制作,采用双组分设计,上部为导电部分,下部为非导电基座用于结构支撑。全面验证采用了三种互补方法:直流电阻测量(821 - 1502Ω)、在100Hz下对不同解剖区域进行复阻抗谱分析(电容性行为下为3.01 - 6.4kΩ)以及8通道EEG系统测试(阻抗范围为5 - 11kΩ)。电学特性表征揭示了空间异质性以及适用于比较电极评估和EEG传感系统验证应用的一致电学特性。为了建立背景,我们分析了六种现有的体模技术,包括商业注塑体模、盐溶液、水凝胶、硅胶模型、基于纺织品的替代品以及多材料实施方案。该分析确定了当前技术中关键的可及性障碍,特别是成本限制(5000 - 20000美元的模具成本)和延长的生产时间线,这限制了其广泛采用。经过验证的3D打印体模解决了这些限制,同时为标准化EEG电极测试提供了合适的电学特性。所展示的与临床EEG采集系统的兼容性确立了该体模作为标准化测试平台在电极性能评估和多通道系统验证方面的适用性,最终有助于使更广泛的研究群体能够更广泛地获得EEG传感系统验证能力。