Suppr超能文献

通过深度学习估算发芽榆树种子的胚根长度。

Estimating Radicle Length of Germinating Elm Seeds via Deep Learning.

作者信息

Li Dantong, Luo Yang, Xue Hua, Sun Guodong

机构信息

School of Information and AI, Beijing Forestry University, Beijing 100083, China.

Hebei Key Lab of Smart National Park, Beijing Forestry University, Beijing 100083, China.

出版信息

Sensors (Basel). 2025 Aug 13;25(16):5024. doi: 10.3390/s25165024.

Abstract

Accurate measurement of seedling traits is essential for plant phenotyping, particularly in understanding growth dynamics and stress responses. Elm trees ( spp.), ecologically and economically significant, pose unique challenges due to their curved seedling morphology. Traditional manual measurement methods are time-consuming, prone to human error, and often lack consistency. Moreover, automated approaches remain limited and often fail to accurately process seedlings with nonlinear or curved morphologies. In this study, we introduce GLEN, a deep learning-based model for detecting germinating elm seeds and accurately estimating their lengths of germinating structures. It leverages a dual-path architecture that combines pixel-level spatial features with instance-level semantic information, enabling robust measurement of curved radicles. To support training, we construct GermElmData, a curated dataset of annotated elm seedling images, and introduce a novel synthetic data generation pipeline that produces high-fidelity, morphologically diverse germination images. This reduces the dependence on extensive manual annotations and improves model generalization. Experimental results demonstrate that GLEN achieves an estimation error on the order of millimeters, outperforming existing models. Beyond quantifying germinating elm seeds, the architectural design and data augmentation strategies in GLEN offer a scalable framework for morphological quantification in both plant phenotyping and broader biomedical imaging domains.

摘要

准确测量幼苗性状对于植物表型分析至关重要,尤其是在了解生长动态和应激反应方面。榆树(属)在生态和经济上具有重要意义,由于其幼苗形态弯曲,给测量带来了独特的挑战。传统的手动测量方法耗时、容易出现人为误差,且往往缺乏一致性。此外,自动化方法仍然有限,通常无法准确处理具有非线性或弯曲形态的幼苗。在本研究中,我们引入了GLEN,这是一种基于深度学习的模型,用于检测发芽的榆树种子并准确估计其发芽结构的长度。它利用了一种双路径架构,将像素级空间特征与实例级语义信息相结合,能够对弯曲的胚根进行稳健测量。为了支持训练,我们构建了GermElmData,这是一个经过整理的榆树幼苗图像注释数据集,并引入了一种新颖的合成数据生成管道,该管道可生成高保真、形态多样的发芽图像。这减少了对大量手动注释的依赖,并提高了模型的泛化能力。实验结果表明,GLEN实现了毫米级的估计误差,优于现有模型。除了对发芽的榆树种子进行量化外,GLEN中的架构设计和数据增强策略为植物表型分析和更广泛的生物医学成像领域中的形态学量化提供了一个可扩展的框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验