Mu Tong, Tian Xing, Ni Peiren, Chen Shichao, Cao Yanan, Cheng Gang
School of Artificial Intelligence, Anhui University of Science and Technology, Huainan 232001, China.
State Key Laboratory of Digital Intelligent Technology for Unmanned Coal Mining, Anhui University of Science & Technology, Huainan 232001, China.
Sensors (Basel). 2025 Aug 20;25(16):5167. doi: 10.3390/s25165167.
Wavelength modulation-tunable diode laser absorption spectroscopy (WM-TDLAS) is a critical tool for gas detection. However, noise in second harmonic signals degrades detection performance. This study presents a hybrid denoising algorithm combining Empirical Mode Decomposition (EMD) and wavelet adaptive thresholding to enhance WM-TDLAS performance. The algorithm decomposes raw signals into intrinsic mode functions (IMFs) via EMD, selectively denoises high-frequency IMFs using wavelet thresholding, and reconstructs the signal while preserving spectral features. Simulation and experimental validation using the CH absorption spectrum at 1654 nm demonstrate that the system achieves a threefold improvement in detection precision (0.1181 ppm). Allan variance analysis revealed that the detection capability of the system was significantly enhanced, with the minimum detection limit (MDL) drastically reduced from 2.31 ppb to 0.53 ppb at 230 s integration time. This approach enhances WM-TDLAS performance without hardware modification, offering significant potential for environmental monitoring and industrial safety applications.
波长调制可调谐二极管激光吸收光谱技术(WM-TDLAS)是气体检测的关键工具。然而,二次谐波信号中的噪声会降低检测性能。本研究提出了一种结合经验模态分解(EMD)和小波自适应阈值的混合去噪算法,以提高WM-TDLAS的性能。该算法通过EMD将原始信号分解为固有模态函数(IMF),使用小波阈值对高频IMF进行选择性去噪,并在保留光谱特征的同时重建信号。利用1654 nm处的CH吸收光谱进行的仿真和实验验证表明,该系统的检测精度提高了三倍(0.1181 ppm)。阿伦方差分析表明,系统的检测能力显著增强,在230 s积分时间下,最低检测限(MDL)从2.31 ppb大幅降低至0.53 ppb。这种方法无需硬件修改即可提高WM-TDLAS的性能,在环境监测和工业安全应用中具有巨大潜力。