Lloret Ángel, Peral Jesús, Ferrández Antonio, Auladell María, Muñoz Rafael
Language and Information Systems Group, Department of Software and Computing Systems, University of Alicante, 03690 Alicante, Spain.
Lucentia Research Group, Department of Software and Computing Systems, University of Alicante, 03690 Alicante, Spain.
Sensors (Basel). 2025 Aug 20;25(16):5179. doi: 10.3390/s25165179.
Digital transformation (DT) has become a strategic priority for public administrations, particularly due to the need to deliver more efficient and citizen-centered services and respond to societal expectations, ESG (Environmental, Social, and Governance) criteria, and the United Nations Sustainable Development Goals (UN SDGs). In this context, the main objective of this study is to propose an innovative methodology to automatically evaluate the level of digital transformation (DT) in public sector organizations. The proposed approach combines traditional assessment methods with Artificial Intelligence (AI) techniques. The methodology follows a dual approach: on the one hand, surveys are conducted using specialized staff from various public entities; on the other, AI-based models (including neural networks and transformer architectures) are used to estimate the DT level of the organizations automatically. Our approach has been applied to a real-world case study involving local public administrations in the Valencian Community (Spain) and shown effective performance in assessing DT. While the proposed methodology has been validated in a specific local context, its modular structure and dual-source data foundation support its international scalability, acknowledging that administrative, regulatory, and DT maturity factors may condition its broader applicability. The experiments carried out in this work include (i) the creation of a domain-specific corpus derived from the surveys and websites of several organizations, used to train the proposed models; (ii) the use and comparison of diverse AI methods; and (iii) the validation of our approach using real data. Based on the deficiencies identified, the study concludes that the integration of technologies such as the Internet of Things (IoT), sensor networks, and AI-based analytics can significantly support resilient, agile urban environments and the transition towards more effective and sustainable Smart City models.
数字转型(DT)已成为公共管理部门的战略重点,特别是因为需要提供更高效且以公民为中心的服务,并回应社会期望、ESG(环境、社会和治理)标准以及联合国可持续发展目标(UN SDGs)。在此背景下,本研究的主要目标是提出一种创新方法,以自动评估公共部门组织的数字转型水平。所提出的方法将传统评估方法与人工智能(AI)技术相结合。该方法采用双重途径:一方面,使用来自各个公共实体的专业人员进行调查;另一方面,使用基于AI的模型(包括神经网络和Transformer架构)来自动估计组织的数字转型水平。我们的方法已应用于涉及西班牙瓦伦西亚自治区地方公共管理部门的实际案例研究,并在评估数字转型方面显示出有效性能。虽然所提出的方法已在特定的地方背景下得到验证,但其模块化结构和双源数据基础支持其国际可扩展性,同时承认行政、监管和数字转型成熟度因素可能会限制其更广泛的适用性。本研究开展的实验包括:(i)创建一个从多个组织的调查和网站中提取的特定领域语料库,用于训练所提出的模型;(ii)使用和比较多种AI方法;(iii)使用真实数据验证我们的方法。基于所发现的不足之处,该研究得出结论,物联网(IoT)、传感器网络和基于AI的分析等技术的整合可以显著支持弹性、敏捷的城市环境以及向更有效和可持续的智慧城市模式的转变。