Shi Jishun, Song Zhipeng, Chen Xiaoming, Bai Ziang, Yu Jialin, Ye Qihang, Yang Zipeng, Qiao Jianru, Ma Shuhua, Zhang Kailiang
School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China.
Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao 066004, China.
Micromachines (Basel). 2025 Jul 31;16(8):895. doi: 10.3390/mi16080895.
The detection of proteins plays a key role in disease diagnosis and drug development. For this, we numerically investigated a novel microfluidic motor actuated by an induced-charge electro-osmotic (ICEO) whirling flow. An alternating current-flow field effect transistor is engineered to modulate the profiles of ICEO streaming to stimulate and adjust the whirling flow in the circle microfluidic chamber. Based on this, we studied the distribution of an ICEO whirling flow in the detection chamber by tuning the fixed potential on the gate electrodes by the simulations. Then, we established a fluid-structure interaction model to explore the influence of blade structure parameters on the rotation performance of microfluidic motors. In addition, we investigated the rotation dependence of microfluidic motors on the potential drop between two driving electrodes and fixed potential on the gate electrodes. Next, we numerically explored the capability of these microfluidic motors for the detection of low-abundance proteins. Finally, we studied the regulating effect of potential drops between the driving electrodes on the detection performance of microfluidic motors by numerical simulations. Microfluidic motors actuated by an ICEO whirling flow hold good potential in environmental monitoring and disease diagnosis for the outstanding advantages of flexible controllability, a simple structure, and gentle work condition.
蛋白质的检测在疾病诊断和药物开发中起着关键作用。为此,我们对一种由感应电荷电渗(ICEO)旋转流驱动的新型微流体马达进行了数值研究。设计了一种交流流场效应晶体管来调制ICEO流动的分布,以刺激和调节圆形微流体腔室中的旋转流。基于此,我们通过模拟调节栅电极上的固定电位,研究了检测腔室中ICEO旋转流的分布。然后,我们建立了流固耦合模型,以探索叶片结构参数对微流体马达旋转性能的影响。此外,我们研究了微流体马达的旋转对两个驱动电极之间的电位降和栅电极上固定电位的依赖性。接下来,我们数值研究了这些微流体马达检测低丰度蛋白质的能力。最后,我们通过数值模拟研究了驱动电极之间的电位降对微流体马达检测性能的调节作用。由ICEO旋转流驱动的微流体马达具有柔性可控性、结构简单和工作条件温和等突出优点,在环境监测和疾病诊断方面具有良好的潜力。