Suppr超能文献

利用感应电荷电渗涡流对微塑料、细菌和微藻进行微流控分离。

Microfluidic fractionation of microplastics, bacteria and microalgae with induced-charge electro-osmotic eddies.

作者信息

Chen Xiaoming, Gao Ziwei, Shi Jishun, Liu Yingxuan, Song Zhipeng, Wu Chungang, Su Li, Zhang Zhouyang, Zhao Yong

机构信息

School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, PR China; Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China.

School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, PR China; Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China.

出版信息

Anal Chim Acta. 2025 Feb 1;1337:343569. doi: 10.1016/j.aca.2024.343569. Epub 2024 Dec 19.

Abstract

BACKGROUND

Fractionation of microalgal cells has important applications in producing pharmaceuticals and treating diseases. Multiple types of microalgal cells generally coexist in the oceans or lakes and are easily contaminated by microplastics and bacteria. Therefore, it is of paramount significance to develop an effective fractionation approach for microalgal cells for biological applications. Counter-rotating induced-charge electro-osmotic (ICEO) eddies present unique advantages in separating microalgal cells for flexible electrode extension fashion and profile regulation manner. Enthused by these, we proposed a contact-free microfluidic approach for the fractionation of microplastics, bacteria, and microalgae with extensible counter-rotating ICEO eddies.

RESULTS

Firstly, we investigated the flow-field distribution actuated by counter-rotating ICEO eddies, the influence of working parameters on the fluid velocity, and the effect of particle sizes and charges on particle separation. Secondly, depending on the investigation of the movement of microparticles and microalgal cells, we explored synthetic effects of flow rate, voltage, and frequency on the fractionation of microalgal cells from microplastics with an efficiency of about 100 %. Thirdly, this method was used to remove the bacteria for pure Dunaliella salina with a purity of about 95.24 %. Fourthly, this approach was engineered in the fractionation of Diatoms, Chlorella, and Dunaliella salina, and the influence of voltage and frequency on the purity of microalgae was studied. Finally, we proposed a multi-stage separation of microalgal cells with extended counter-rotating ICEO eddies and obtained an efficiency of 91.00 % in the first stage and a purity of 91.55 % and 90.48 % in the second stage.

SIGNIFICANCE

This contact-free method holds good potential in the selection of target microalgal cells to address the tricky issues of chronic wound treatment with the advantage of flexible electrode extension fashion and profile regulation manner.

摘要

背景

微藻细胞的分级分离在药物生产和疾病治疗中具有重要应用。多种类型的微藻细胞通常共存于海洋或湖泊中,且容易受到微塑料和细菌的污染。因此,开发一种有效的微藻细胞分级分离方法用于生物应用具有至关重要的意义。反向旋转感应电荷电渗(ICEO)涡流在分离微藻细胞方面具有独特优势,其电极扩展方式灵活且轮廓可调节。受此启发,我们提出了一种利用可扩展的反向旋转ICEO涡流对微塑料、细菌和微藻进行分级分离的无接触微流控方法。

结果

首先,我们研究了反向旋转ICEO涡流驱动的流场分布、工作参数对流体速度的影响以及颗粒大小和电荷对颗粒分离的作用。其次,通过对微粒和微藻细胞运动的研究,我们探索了流速、电压和频率对从微塑料中分离微藻细胞的综合影响,分离效率约为100%。第三,该方法用于去除细菌以获得纯度约为95.24%的纯盐藻。第四,该方法应用于硅藻、小球藻和盐藻的分级分离,并研究了电压和频率对微藻纯度的影响。最后,我们提出了一种利用扩展的反向旋转ICEO涡流对微藻细胞进行多级分离的方法,第一级分离效率为91.00%,第二级纯度分别为91.55%和90.48%。

意义

这种无接触方法在选择目标微藻细胞方面具有良好的潜力,以利用灵活的电极扩展方式和轮廓调节方式解决慢性伤口治疗中的棘手问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验