Soriano Lianna D, Go Shao-Xiang, Li Lunna, Bajalovic Natasa, Loke Desmond K
College of Letters and Science, University of California, Berkeley, CA 94720, USA.
Department of Science, Mathematics and Technology, and The AI Mega Centre, Singapore University of Technology and Design, Singapore 487372, Singapore.
Micromachines (Basel). 2025 Jul 31;16(8):900. doi: 10.3390/mi16080900.
Molecular sensor systems, e.g., implantables and wearables, provide extensive health-related monitoring. Glucose sensor systems have historically prevailed in wearable bioanalysis applications due to their continuous and reliable glucose monitoring, a feat not yet accomplished for other biomarkers. However, the advancement of reagentless detection methodologies may facilitate the creation of molecular sensor systems for multiple analytes. Improving the sensitivity and selectivity of molecular sensor systems is also crucial for biomarker detection under intricate physiological circumstances. The term multidomain molecular sensor systems is utilized to refer, in general, to both biological and chemical sensor systems. This review examines methodologies for enhancing signal amplification, improving selectivity, and facilitating reagentless detection in multidomain molecular sensor devices. The review also analyzes the fundamental components of multidomain molecular sensor systems, including substrate materials, bodily fluids, power, and decision-making units. The review article further investigates how extensive data gathered from multidomain molecular sensor systems, in conjunction with current data processing algorithms, facilitate biomarker detection for precision medicine.
分子传感器系统,例如可植入设备和可穿戴设备,可提供广泛的与健康相关的监测。葡萄糖传感器系统由于能够持续、可靠地监测葡萄糖,在可穿戴生物分析应用中一直占据主导地位,而这一壮举对于其他生物标志物来说尚未实现。然而,无试剂检测方法的进步可能会推动多种分析物分子传感器系统的创建。提高分子传感器系统的灵敏度和选择性对于在复杂生理环境下进行生物标志物检测也至关重要。术语“多域分子传感器系统”通常用于指代生物传感器系统和化学传感器系统。本综述探讨了在多域分子传感器设备中增强信号放大、提高选择性以及促进无试剂检测的方法。该综述还分析了多域分子传感器系统的基本组成部分,包括基底材料、体液、电源和决策单元。这篇综述文章进一步研究了从多域分子传感器系统收集的大量数据如何与当前的数据处理算法相结合,促进精准医疗中的生物标志物检测。