Suppr超能文献

超声辐照下基于异恶唑分子的绿色高效合成方法

The Green and Effective Synthesis of Isoxazole-Based Molecules Under Ultrasonic Irradiation Approaches.

作者信息

Chen Mei-Tong, Li Yao-Rong, Wang Zhao-Qi, Jiang Shan, Jia Zan-Hui, Zhang Da-Wei

机构信息

The Second Hospital of Jilin University, Changchun 130041, China.

College of Plant Science, Jilin University, Changchun 130062, China.

出版信息

Pharmaceuticals (Basel). 2025 Aug 10;18(8):1179. doi: 10.3390/ph18081179.

Abstract

Isoxazole-based molecules constitute a crucial category of heterocyclic compounds with wide-ranging applications across pharmaceutical development, advanced materials, and pesticide synthesis. Traditional synthetic approaches for isoxazole derivatives frequently encounter challenges such as extended reaction periods, severe operating conditions, and reliance on toxic solvents. As an eco-friendly alternative, sonochemistry has emerged as a promising approach for organic synthesis, offering enhanced reaction efficiency, reduced energy consumption, and improved yields. In this context, this review introduces the recent advancements in ultrasound-assisted strategies for the synthesis of isoxazole-scaffolds and their derivatives. Various methodologies are discussed, including multi-component reactions, catalytic systems, and solvent-free protocols. The integration of ultrasound not only accelerates reaction kinetics but also minimizes byproduct formation and enables the use of green solvents or catalysts. Key advantages such as shorter reaction durations, higher atom economy, and operational simplicity are emphasized. This work underscores the potential of sonochemical techniques to revolutionize isoxazole-based molecule synthesis, aligning with the principles of sustainable and green chemistry.

摘要

基于异恶唑的分子是一类至关重要的杂环化合物,在药物研发、先进材料和农药合成等领域有着广泛应用。传统的异恶唑衍生物合成方法常常面临反应时间长、操作条件苛刻以及依赖有毒溶剂等挑战。作为一种环保替代方法,声化学已成为有机合成中一种很有前景的方法,具有提高反应效率、降低能耗和提高产率等优点。在此背景下,本综述介绍了超声辅助合成异恶唑骨架及其衍生物策略的最新进展。讨论了各种方法,包括多组分反应、催化体系和无溶剂方案。超声的引入不仅加快了反应动力学,还减少了副产物的形成,并能够使用绿色溶剂或催化剂。强调了反应时间短、原子经济性高和操作简便等关键优势。这项工作强调了声化学技术在革新基于异恶唑的分子合成方面的潜力,符合可持续和绿色化学的原则。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7dc/12389681/649e52c3f789/pharmaceuticals-18-01179-g001.jpg

相似文献

1
The Green and Effective Synthesis of Isoxazole-Based Molecules Under Ultrasonic Irradiation Approaches.
Pharmaceuticals (Basel). 2025 Aug 10;18(8):1179. doi: 10.3390/ph18081179.
3
Management of urinary stones by experts in stone disease (ESD 2025).
Arch Ital Urol Androl. 2025 Jun 30;97(2):14085. doi: 10.4081/aiua.2025.14085.
4
Sustainable Synthesis of Medicinally Important Heterocycles.
Mini Rev Med Chem. 2025;25(10):760-794. doi: 10.2174/0113895575341409241201171848.
5
Fluorinated Radicals in Divergent Synthesis via Photoredox Catalysis.
Acc Chem Res. 2025 Jul 1;58(13):2046-2060. doi: 10.1021/acs.accounts.5c00239. Epub 2025 Jun 11.

本文引用的文献

1
An Update on the Nitrogen Heterocycle Compositions and Properties of U.S. FDA-Approved Pharmaceuticals (2013-2023).
J Med Chem. 2024 Jul 25;67(14):11622-11655. doi: 10.1021/acs.jmedchem.4c01122. Epub 2024 Jul 12.
2
The Effective Synthesis of New Benzoquinoline Derivatives as Small Molecules with Anticancer Activity.
Pharmaceuticals (Basel). 2023 Dec 28;17(1):52. doi: 10.3390/ph17010052.
3
Lewis acid-promoted direct synthesis of isoxazole derivatives.
Beilstein J Org Chem. 2023 Oct 16;19:1562-1567. doi: 10.3762/bjoc.19.113. eCollection 2023.
5
Recent Advances in the Green Synthesis of Active -Heterocycles and Their Biological Activities.
Pharmaceuticals (Basel). 2023 Jun 13;16(6):873. doi: 10.3390/ph16060873.
6
Synthesis of Imidazole-Based Molecules under Ultrasonic Irradiation Approaches.
Molecules. 2023 Jun 19;28(12):4845. doi: 10.3390/molecules28124845.
7
Isoxazole/Isoxazoline Skeleton in the Structural Modification of Natural Products: A Review.
Pharmaceuticals (Basel). 2023 Feb 2;16(2):228. doi: 10.3390/ph16020228.
9
In vitro and in vivo assessment of the antioxidant potential of isoxazole derivatives.
Sci Rep. 2022 Oct 29;12(1):18223. doi: 10.1038/s41598-022-23050-x.
10
An Overview of Bioactive 1,3-Oxazole-Containing Alkaloids from Marine Organisms.
Pharmaceuticals (Basel). 2021 Dec 6;14(12):1274. doi: 10.3390/ph14121274.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验