Suppr超能文献

探索肿瘤治疗中抗体药物偶联物的实验方法和计算机模拟方法。

Exploring Experimental and In Silico Approaches for Antibody-Drug Conjugates in Oncology Therapies.

作者信息

de Almeida Vitor Martins, Soares Milena Botelho Pereira, Santos-Filho Osvaldo Andrade

机构信息

Laboratory of Molecular Modeling and Computational Structural Biology, Walter Mors Natural Products Research Institute, Health Science Center, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, 373, Bloco H, Cidade Universitária, Rio de Janeiro 21941-599, RJ, Brazil.

Gonçalo Moniz Institute, Oswaldo Cruz Foundation, Rua Waldemar Falcão, 121, Salvador 40296-710, BA, Brazil.

出版信息

Pharmaceuticals (Basel). 2025 Aug 14;18(8):1198. doi: 10.3390/ph18081198.

Abstract

BACKGROUND/OBJECTIVES: Antibody-drug conjugates are a rapidly evolving class of cancer therapeutics that combine the specificity of monoclonal antibodies with the potency of cytotoxic drugs. This review explores experimental and computational advances in ADC design, focusing on structural elements and optimization strategies.

METHODS

We examined recent developments in the mechanisms of action, antibody engineering, linker chemistries, and payload selection. Emphasis was placed on experimental strategies and computational tools, including molecular modeling and AI-driven structure prediction.

RESULTS

ADCs function through both internalization-dependent and -independent mechanisms, enabling targeted drug delivery and bystander effects. The therapeutic efficacy of ADCs depends on key factors: antigen specificity, linker stability, and payload potency. Linkers are categorized as cleavable or non-cleavable, each with distinct advantages. Payloads-mainly tubulin inhibitors and DNA-damaging agents-require extreme potency to be effective. Computational methods have become essential for antibody modeling, developability assessment, and in silico optimization of ADC components, accelerating candidate selection and reducing experimental labor.

CONCLUSIONS

The integration of experimental and in silico approaches enhances ADC design by improving selectivity, stability, and efficacy. These strategies are critical for advancing next-generation ADCs with broader applicability and improved therapeutic indices.

摘要

背景/目的:抗体药物偶联物是一类快速发展的癌症治疗药物,它将单克隆抗体的特异性与细胞毒性药物的效力相结合。本综述探讨了抗体药物偶联物(ADC)设计方面的实验和计算进展,重点关注结构要素和优化策略。

方法

我们研究了作用机制、抗体工程、连接子化学和载药选择方面的最新进展。重点是实验策略和计算工具,包括分子建模和人工智能驱动的结构预测。

结果

ADC通过内化依赖性和非依赖性机制发挥作用,实现靶向给药和旁观者效应。ADC的治疗效果取决于关键因素:抗原特异性、连接子稳定性和载药效力。连接子分为可裂解型和不可裂解型,各有其独特优势。载药主要是微管蛋白抑制剂和DNA损伤剂,需要极高的效力才能有效。计算方法对于抗体建模、可开发性评估以及ADC组件的计算机模拟优化至关重要,可加速候选药物的筛选并减少实验工作量。

结论

实验方法与计算机模拟方法相结合,通过提高选择性、稳定性和疗效来增强ADC设计。这些策略对于推进具有更广泛适用性和更高治疗指数的下一代ADC至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/108f/12389400/981cb0256836/pharmaceuticals-18-01198-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验