Department of Automation, Tsinghua University, Beijing, 100084, China.
BMC Bioinformatics. 2024 Nov 6;25(1):348. doi: 10.1186/s12859-024-05961-w.
Antibodies play a crucial role in disease treatment, leveraging their ability to selectively interact with the specific antigen. However, screening antibody gene sequences for target antigens via biological experiments is extremely time-consuming and labor-intensive. Several computational methods have been developed to predict antibody-antigen interaction while suffering from the lack of characterizing the underlying structure of the antibody.
Beneficial from the recent breakthroughs in deep learning for antibody structure prediction, we propose a novel neural network architecture to predict antibody-antigen interaction. We first introduce AbAgIPA: an antibody structure prediction network to obtain the antibody backbone structure, where the structural features of antibodies and antigens are encoded into representation vectors according to the amino acid physicochemical features and Invariant Point Attention (IPA) computation methods. Finally, the antibody-antigen interaction is predicted by global max pooling, feature concatenation, and a fully connected layer. We evaluated our method on antigen diversity and antigen-specific antibody-antigen interaction datasets. Additionally, our model exhibits a commendable level of interpretability, essential for understanding underlying interaction mechanisms.
Quantitative experimental results demonstrate that the new neural network architecture significantly outperforms the best sequence-based methods as well as the methods based on residue contact maps and graph convolution networks (GCNs). The source code is freely available on GitHub at https://github.com/gmthu66/AbAgIPA .
抗体在疾病治疗中发挥着关键作用,利用其选择性与特定抗原相互作用的能力。然而,通过生物实验筛选针对目标抗原的抗体基因序列极其耗时耗力。已经开发了几种计算方法来预测抗体-抗原相互作用,但这些方法都无法描述抗体的潜在结构。
得益于最近在抗体结构预测方面的深度学习突破,我们提出了一种新的神经网络架构来预测抗体-抗原相互作用。我们首先引入了 AbAgIPA:一种抗体结构预测网络,以获取抗体的骨干结构,其中根据氨基酸的物理化学特性和不变点注意力 (IPA) 计算方法,将抗体和抗原的结构特征编码为表示向量。最后,通过全局最大池化、特征串联和全连接层来预测抗体-抗原相互作用。我们在抗原多样性和抗原特异性抗体-抗原相互作用数据集上评估了我们的方法。此外,我们的模型表现出了令人称赞的可解释性水平,这对于理解潜在的相互作用机制至关重要。
定量实验结果表明,新的神经网络架构显著优于基于序列的最佳方法以及基于残基接触图和图卷积网络 (GCN) 的方法。源代码可在 https://github.com/gmthu66/AbAgIPA 上的 GitHub 上免费获取。