Suppr超能文献

连接子生成式预训练变换器(Linker-GPT):利用分子生成器和强化学习设计抗体药物偶联物连接子

Linker-GPT: design of Antibody-drug conjugates linkers with molecular generators and reinforcement learning.

作者信息

Su An, Luo Yanlin, Zhang Chengwei, Duan Hongliang

机构信息

Zhejiang Key Laboratory of Green Manufacturing Technology for Chemical Drugs, Key Laboratory of Pharmaceutical Engineering of Zhejiang Province, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, 310014, China.

College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.

出版信息

Sci Rep. 2025 Jul 1;15(1):20525. doi: 10.1038/s41598-025-05555-3.

Abstract

The stability and therapeutic efficacy of antibody-drug conjugates (ADCs) are critically determined by the chemical linkers that connect the antibody to the cytotoxic payload, which is a key factor influencing drug release, plasma stability, and off-target toxicity. However, the current linker design space remains highly constrained, with most approved ADCs relying on a narrow set of established motifs. This limitation highlights an urgent need for computational tools capable of generating structurally diverse and synthetically accessible linkers. In this study, we introduce Linker-GPT, a Transformer-based deep learning framework leveraging self-attention mechanisms to generate novel ADC linkers with high structural diversity and synthetic feasibility. The model integrates transfer learning from large-scale molecular datasets and reinforcement learning (RL) to iteratively refine molecular properties such as drug-likeness and synthetic accessibility. During transfer learning, a pre-trained model was fine-tuned on a curated linker dataset, yielding molecules with high validity (0.894), novelty (0.997), and uniqueness (0.814 at 1k generation). RL further optimized the model to prioritize synthesizability and drug-like properties, resulting in 98.7% of generated molecules meeting target thresholds for QED (> 0.6), LogP (< 5), and synthetic accessibility score (SAS < 4). Linker-GPT demonstrates strong potential as a computational platform for accelerating the discovery and optimization of novel ADC linkers, offering a scalable solution for early-stage linker design. While these results are currently computational, they provide a foundation for future experimental validation and optimization.

摘要

抗体药物偶联物(ADC)的稳定性和治疗效果关键取决于连接抗体与细胞毒性药物的化学连接子,这是影响药物释放、血浆稳定性和脱靶毒性的关键因素。然而,目前连接子的设计空间仍然受到高度限制,大多数获批的ADC依赖于一套狭窄的既定基序。这一局限性凸显了对能够生成结构多样且可合成的连接子的计算工具的迫切需求。在本研究中,我们引入了Linker-GPT,这是一个基于Transformer的深度学习框架,利用自注意力机制生成具有高结构多样性和合成可行性的新型ADC连接子。该模型整合了来自大规模分子数据集的迁移学习和强化学习(RL),以迭代优化诸如类药性质和合成可及性等分子特性。在迁移学习过程中,一个预训练模型在一个精心策划的连接子数据集上进行微调,生成具有高有效性(0.894)、新颖性(0.997)和独特性(在1k次生成时为0.814)的分子。RL进一步优化模型,以优先考虑合成性和类药性质,结果98.7%的生成分子达到了QED(>0.6)、LogP(<5)和合成可及性分数(SAS<4)的目标阈值。Linker-GPT作为加速新型ADC连接子发现和优化的计算平台显示出强大潜力,为早期连接子设计提供了可扩展的解决方案。虽然目前这些结果是基于计算的,但它们为未来的实验验证和优化奠定了基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验