Wen Zhenyu, Zhu Wenjie, Chen Yongxue, Sun Huanhuan, Zhu Lin, Yang Yuling, Song Yanping, Chen Lei, Dong Jiajun, Liu Bingbing
Key Laboratory of Solid State Optoelectronic Devices of Zhejiang Province, College of Physics and Electronic Information Engineering, Zhejiang Normal University, 688 Yingbin Avenue,Jinhua321004, P.R. China.
School of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, P. R. China.
Langmuir. 2025 Sep 9;41(35):23596-23609. doi: 10.1021/acs.langmuir.5c02697. Epub 2025 Aug 28.
Surface-enhanced Raman spectroscopy (SERS) holds immense promise for molecular detection, yet the quest for high-performance, plasmon-free substrates remains active. This work pioneers the rational design and engineering of phase-tunable MoS nanoclusters─metallic (1T), semiconductor (2H), and, critically, hybrid metal/semiconductor (1T/2H) phases as a novel class of SERS platforms. We demonstrate this exceptional capability for ultrasensitive detection of environmentally hazardous dyes (e.g., rhodamine B, crystal violet, and methylene blue). Remarkably, the optimized 1T/2H-MoS substrate achieves an enhancement factor of 1.02 × 10, which ranks among the higher values for SERS substrates derived from semiconductors. Crucially, time-resolved transient photoluminescence decay spectroscopy reveals a dramatic 52% decrease in average exciton lifetime (from 3.88 to 1.86 ns) for RhB adsorbed on 1T/2H-MoS substrates. This profound decrease provides direct evidence for highly efficient interfacial charge transfer, predominantly driven by the built-in electric field unique to the engineered phase junction. Furthermore, by leveraging the distinct Raman signatures enabled by this heterophase substrate, we achieve the multiplex detection of all five environmental nucleobases (adenine, guanine, cytosine, thymine, and uracil) in both individual and mixed solutions. This work not only delivers fundamental mechanistic insights into charge transfer-mediated SERS but also provides a practical platform with broad implications for environmental monitoring, biomedical diagnostics, and analytical chemistry.
表面增强拉曼光谱(SERS)在分子检测方面具有巨大潜力,但对高性能、无等离子体基底的探索仍在积极进行。这项工作开创了相可调MoS纳米团簇的合理设计与工程——金属相(1T)、半导体相(2H),以及至关重要的混合金属/半导体相(1T/2H),将其作为一类新型的SERS平台。我们展示了这种用于超灵敏检测环境有害染料(如罗丹明B、结晶紫和亚甲基蓝)的卓越能力。值得注意的是,优化后的1T/2H-MoS基底实现了1.02×10的增强因子,在源自半导体的SERS基底中位列较高值。至关重要的是,时间分辨瞬态光致发光衰减光谱显示,吸附在1T/2H-MoS基底上的罗丹明B的平均激子寿命显著降低了52%(从3.88纳秒降至1.86纳秒)。这种大幅降低为高效的界面电荷转移提供了直接证据,主要是由工程化相结特有的内建电场驱动的。此外,通过利用这种异相基底实现的独特拉曼特征,我们在单独和混合溶液中实现了对所有五种环境核碱基(腺嘌呤、鸟嘌呤、胞嘧啶、胸腺嘧啶和尿嘧啶)的多重检测。这项工作不仅为电荷转移介导的SERS提供了基本的机理见解,还提供了一个具有广泛应用前景的实用平台,对环境监测、生物医学诊断和分析化学具有重要意义。