Ali Basant A, Musgrave Charles B
Department of Chemical and Biological Engineering, University of Colorado, Boulder, Colorado 80303, United States.
Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80309, United States.
ACS Nano. 2025 Sep 9;19(35):31331-31339. doi: 10.1021/acsnano.5c03367. Epub 2025 Aug 28.
Tuning the exciton fine structure of lead halide perovskites to brighten the dark excitonic ground state is crucial for enhancing their optoelectronic performance. While Rashba splitting is linked to dark-to-light exciton flipping, the specific nature of this phenomenon remains unclear. Here, we systematically studied 18 CsPbBr structures, representing 2D systems of CsPbBr with varying degrees of distortion, using density functional theory (DFT) and the Model-Bethe-Salpeter Equation (m-BSE). We demonstrate that spin-orbit coupling (SOC) combined with inversion symmetry breaking induces spin splitting in both the valence band (VB) and conduction band (CB), typically leading to a dark ground exciton due to band misalignment, even in the presence of Rashba splitting. However, controlled inversion symmetry breaking in states with weaker SOC─such as the VB states in perovskites─enables tunable Rashba splitting of the VBM. It was found that structures with VBM exhibiting linear Rashba and linear Dresselhaus splitting, where the Rashba coefficient exceeds the Dresselhaus coefficient, create an elliptical spin texture that aligns the VB maximum (VBM) and CB minimum (CBM), potentially brightening the excitonic ground state. This behavior is driven by significant bond angle distortions from the ideal cubic perovskite geometry that enhances Rashba splitting of the VBM through orbital noncentrosymmetry and facilitates a tetragonal-to-orthorhombic phase transition that further splits the excitonic states and flattens the VBM. These findings establish a structure-property relationship linking structural distortions and Rashba splitting that elucidates their role in brightening ground excitons and their implications for bright ground states in perovskites used in advanced optoelectronic applications.
调整卤化铅钙钛矿的激子精细结构以照亮暗激子基态对于提高其光电性能至关重要。虽然Rashba分裂与暗激子到亮激子的翻转有关,但这种现象的具体性质仍不清楚。在这里,我们使用密度泛函理论(DFT)和模型贝叶斯 - 萨尔皮特方程(m - BSE)系统地研究了18种CsPbBr结构,这些结构代表了具有不同程度畸变的CsPbBr二维体系。我们证明,自旋 - 轨道耦合(SOC)与反演对称性破缺相结合会在价带(VB)和导带(CB)中诱导自旋分裂,即使存在Rashba分裂,由于能带失配通常也会导致暗基态激子。然而,在具有较弱SOC的状态(如钙钛矿中的VB状态)中控制反演对称性破缺能够实现VBM的可调谐Rashba分裂。研究发现,VBM表现出线性Rashba和线性Dresselhaus分裂且Rashba系数超过Dresselhaus系数的结构会产生椭圆形自旋纹理,使VB最大值(VBM)和CB最小值(CBM)对齐,有可能照亮激子基态。这种行为是由理想立方钙钛矿几何结构的显著键角畸变驱动的,这种畸变通过轨道非中心对称性增强了VBM的Rashba分裂,并促进了四方相向正交相的转变,进一步分裂激子态并使VBM变平。这些发现建立了一种结构 - 性质关系,将结构畸变与Rashba分裂联系起来,阐明了它们在照亮基态激子中的作用以及对用于先进光电应用的钙钛矿中亮基态的影响。