Feng Hao, Li Zhenxi, Gao Shilun, Zhang Youjia, Guo Ruijie, Cao Peng-Fei, Yang Huabin
Institute of New Energy Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China.
School of Integrated Circuit Science and Engineering, Tianjin University of Technology, No. 391, Binshui Xidao, Xiqing District, Tianjin, China.
J Colloid Interface Sci. 2025 Aug 20;702(Pt 1):138772. doi: 10.1016/j.jcis.2025.138772.
The increasing demand for safe, high-energy-density batteries drives the development of solid-state electrolytes. Organic/inorganic hybrid electrolytes, integrating the benefits of polymer and inorganic electrolytes, exhibit flexibility, high mechanical strength, and superior ionic conductivity. However, interfacial incompatibility between organic/inorganic components and high electrolyte/electrode interfacial resistance restricts their practical applications. Herein, a flexible and high ionic conductive organic/inorganic electrolyte is prepared via the simple electrospinning of LiAlGe(PO)@polyacrylonitrile (LAGP@PAN) and then in-situ polymerization of vinylene carbonate (VC). The LAGP fillers are homogenously distributed in PAN fibers, contributing to the compatible interface between the polymer matrix and inorganic reinforcement. The in-situ polymerization of VC to poly(vinylene carbonate) (PVCA) further improves the intimate electrolyte/electrode contact. As a result, the LAGP@PAN/PVCA electrolyte exhibits a high ionic conductivity of 2.05 × 10 S cm at 30 °C. The Li|LAGP@PAN/PVCA|Li symmetric cell can stably cycle for over 2300 h. The Li|LAGP@PAN/PVCA|LiFePO cell exhibits excellent cycling performance with a capacity retention of 88 % after 700 cycles at 1C. Even combined with commercial LiFePO cathode and thin Li foil anode (N/P = 2), the full cell also shows stable cycling performance. This study presents a promising approach to mitigate interfacial challenges in solid electrolytes, facilitating the development of Li metal with high-safety and high-energy density.
对安全、高能量密度电池日益增长的需求推动了固态电解质的发展。有机/无机混合电解质结合了聚合物和无机电解质的优点,具有柔韧性、高机械强度和优异的离子导电性。然而,有机/无机成分之间的界面不相容性以及高电解质/电极界面电阻限制了它们的实际应用。在此,通过简单的静电纺丝制备了LiAlGe(PO)@聚丙烯腈(LAGP@PAN),然后对碳酸亚乙烯酯(VC)进行原位聚合,制备出一种柔性且高离子导电的有机/无机电解质。LAGP填料均匀分布在PAN纤维中,有助于聚合物基体与无机增强体之间形成相容界面。VC原位聚合成聚碳酸亚乙烯酯(PVCA)进一步改善了电解质与电极的紧密接触。结果,LAGP@PAN/PVCA电解质在30℃时表现出2.05×10 S cm的高离子电导率。Li|LAGP@PAN/PVCA|Li对称电池可稳定循环超过2300小时。Li|LAGP@PAN/PVCA|LiFePO电池表现出优异的循环性能,在1C下700次循环后容量保持率为88%。即使与商用LiFePO正极和薄锂箔负极(N/P = 2)组合,全电池也显示出稳定的循环性能。本研究提出了一种有前景的方法来缓解固体电解质中的界面挑战,促进高安全性和高能量密度锂金属的发展。