Suppr超能文献

一种基于新型动态Nelder的电鳗觅食算法用于全局优化和病理性结直肠癌图像分割。

A novel dynamic Nelder-based Electric Eel Foraging algorithm for global optimization and pathological colorectal cancer image segmentation.

作者信息

Abdel-Salam Mahmoud, Houssein Essam H, Emam Marwa M, Abdel Samee Nagwan, Azam Mohamed T

机构信息

Faculty of Computers and Information Science, Mansoura University, Egypt.

Faculty of Computers and Information, Minia University, Minia, Egypt; Minia National University, Minia, Egypt.

出版信息

Comput Biol Med. 2025 Oct;197(Pt A):110982. doi: 10.1016/j.compbiomed.2025.110982. Epub 2025 Aug 27.

Abstract

Colorectal cancer (CRC) is a major global health concern, where timely and precise diagnosis is crucial for effective treatment. In medical imaging, accurate segmentation of pathological regions is essential for guiding diagnostic decisions and treatment strategies. However, traditional metaheuristic-based segmentation methods often face challenges like slow convergence, suboptimal threshold determination, and inadequate balancing between exploration and exploitation, which can limit their effectiveness in multi-threshold image segmentation (MTIS) of CRC pathology images. In this study, we propose the Dynamic Adaptive Nelder Electric Eel Foraging Optimization (DANEEFO) algorithm, an enhanced version of the Electric Eel Foraging Optimization (EEFO) algorithm, specifically designed to address these challenges in medical image segmentation. DANEEFO incorporates four strategies to enhance its performance for CRC pathology image segmentation: Latin Hypercube Initialization (LHI), which ensures a structured and diverse population at the start of the search process; the Adaptive Attraction Strategy (AAS), which dynamically balances exploration and exploitation to prevent premature convergence; the Adaptive Nelder-Mead Simplex (ANM) method, improving both global and local search capabilities; and the Dynamic Spread Strategy (DSS), which promotes search diversity to avoid stagnation in local optima. The DANEEFO algorithm is rigorously tested on CEC2017 benchmark functions and is applied to MTIS of CRC pathology images using 2D Renyi entropy and 2D histograms. The experimental results demonstrate that DANEEFO surpasses several classical and recent metaheuristic-based segmentation algorithms in terms of segmentation accuracy and efficiency. Specifically, the proposed method achieves a Peak Signal-to-Noise Ratio (PSNR) of 29.9410, a Feature Similarity Index Measure (FSIM) of 0.9882, and a Structural Similarity Index Measure (SSIM) of 0.9782. These results demonstrate DANEEFO's ability to deliver superior segmentation performance, making it a promising tool for CRC diagnosis and facilitating more accurate treatment planning.

摘要

结直肠癌(CRC)是一个重大的全球健康问题,及时准确的诊断对于有效治疗至关重要。在医学成像中,病理区域的准确分割对于指导诊断决策和治疗策略至关重要。然而,传统的基于元启发式的分割方法常常面临收敛速度慢、阈值确定次优以及探索与利用之间平衡不足等挑战,这可能会限制它们在CRC病理图像的多阈值图像分割(MTIS)中的有效性。在本研究中,我们提出了动态自适应电鳗觅食优化(DANEEFO)算法,它是电鳗觅食优化(EEFO)算法的增强版本,专门设计用于解决医学图像分割中的这些挑战。DANEEFO纳入了四种策略来提高其在CRC病理图像分割中的性能:拉丁超立方初始化(LHI),它在搜索过程开始时确保种群结构良好且多样化;自适应吸引策略(AAS),动态平衡探索与利用以防止过早收敛;自适应Nelder-Mead单纯形(ANM)方法,提高全局和局部搜索能力;以及动态扩展策略(DSS),促进搜索多样性以避免陷入局部最优。DANEEFO算法在CEC2017基准函数上进行了严格测试,并使用二维Renyi熵和二维直方图应用于CRC病理图像的MTIS。实验结果表明,DANEEFO在分割准确性和效率方面优于几种经典的和最近的基于元启发式的分割算法。具体而言,所提出的方法实现了29.9410的峰值信噪比(PSNR)、0.9882的特征相似性指数测量(FSIM)和0.9782的结构相似性指数测量(SSIM)。这些结果证明了DANEEFO能够提供卓越的分割性能,使其成为CRC诊断的一个有前途的工具,并有助于制定更准确的治疗计划。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验