Padilla-Teniente Brenda Verónica, Fajardo-Díaz Juan L, Macclesh Del Pino Pérez Luis A, Urías Florentino López, Muñoz-Sandoval Emilio
División de Materiales Avanzados, IPICYT, Camino a presa San José 2055, Lomas 4a sección, San Luis Potosí 78216, Mexico.
Global Aqua Innovation Center and Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan.
Nanotechnology. 2025 Sep 8;36(36). doi: 10.1088/1361-6528/ae0042.
Hybrid Fe- and Cu-based nanoparticles (NPs) embedded in a variety of graphitic carbon matrices were produced using an aerosol-assisted chemical vapor deposition method. A thin copper foil was used as the substrate, and ferrocene and benzylamine were pyrolyzed at temperatures ranging from 750 °C to 950 °C. Three types of hybrid materials were obtained: (1) FeC and Cu NPs encapsulated in graphitic carbon at 750 °C, (2) nitrogen-doped multiwalled carbon nanotubes with a high density of NPs attached to their surface at 800 °C, and (3) a large tubular-defective fiber-type material surrounded by NPs above 850 °C. Backscattering scanning electron microscopy and energy dispersive spectroscopy revealed the composition, morphology, and size of the NPs obtained in each case. Raman spectroscopy characterizations revealed the typical G-band and D-band with/values ranging from 0.79 to 0.88, which are related to the formation of topological defects and highly defective tubule-like graphitic structures. We also correlated the shift of the G-band to lower values with the type of structure obtained by increasing synthesis temperature. The interlayer graphitic distance and FeC- and Cu-NP crystal planes were examined using transmission electron microscopy. Finally, we proposed a formation mechanism for the different hybrid materials involved in the synthesis. Electrochemical impedance spectroscopy results are discussed. Our samples, with their unique properties, can be used as molecular sensors or electrodes in energy storage devices, opening up exciting possibilities for future applications.
采用气溶胶辅助化学气相沉积法制备了嵌入多种石墨碳基质中的铁基和铜基混合纳米颗粒(NPs)。使用薄铜箔作为基底,二茂铁和苄胺在750℃至950℃的温度下热解。获得了三种类型的混合材料:(1)750℃时封装在石墨碳中的FeC和Cu NPs;(2)800℃时表面附着高密度NPs的氮掺杂多壁碳纳米管;(3)850℃以上被NPs包围的大管状缺陷纤维型材料。背散射扫描电子显微镜和能量色散光谱揭示了每种情况下所获得的NPs的组成、形态和尺寸。拉曼光谱表征揭示了典型的G带和D带,其I /I值在0.79至0.88之间,这与拓扑缺陷和高度缺陷的管状石墨结构的形成有关。我们还将G带向较低值的位移与通过提高合成温度获得的结构类型相关联。使用透射电子显微镜检查了层间石墨距离以及FeC和Cu-NP晶面。最后,我们提出了合成过程中涉及的不同混合材料的形成机制。讨论了电化学阻抗谱结果。我们的样品具有独特的性能,可作为分子传感器或储能装置中的电极,为未来应用开辟了令人兴奋的可能性。