Ding Peng-Fei, Zhang Jia-Tong, Zhu Xiao-Long, Cui Yue, Chen Chun-Lei, Liu Xun-Zhi, Shen Jun-Da, Zou Le-Xuan, Lu Yue, Zhuang Zong, Hang Chun-Hua, Li Wei
Department of Neurosurgery, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing, PR China.
Department of Neurosurgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
J Neuroinflammation. 2025 Aug 28;22(1):208. doi: 10.1186/s12974-025-03530-3.
Subarachnoid hemorrhage (SAH) is a common acute condition in neurosurgery, with microglial function playing a crucial role in determining patient outcomes. However, the involved mechanisms are complex and demand thorough investigation. In our study, we combined transcriptomic and metabolomic approaches to identify key regulators of microglial function, offering novel insights for potential therapeutic strategies in SAH treatment.
The neurological function of SAH mice was evaluated using the open field test, rotarod test, and nissl staining. In an in vitro SAH model, key pathways and genes that regulate microglial function were identified through the integration of transcriptomics and metabolomics. Enzyme-Linked Immunosorbent Assay, Immunofluorescence, Western blot, Real-Time PCR, pHrodo, and Lyso-Tracker were employed to assess lysosomal and microglial function.
In SAH mice, both neurological and microglial functions were significantly impaired on the first day but showed recovery over time. The combined results from transcriptomics and metabolomics identified 5-lipoxygenase (5-LOX) as a key target in regulating microglial function post-SAH. Administering resolvin D1 (RvD1) exogenously to inhibit 5-LOX nuclear translocation or directly supplementing lipoxin A4 (LXA4) to adjust the leukotriene B4 (LTB4)/LXA4 ratio, can improve lysosomal acidification, mitigate impaired lysosomal function, and enhance phagocytosis while reducing the inflammatory response. Protecting microglial function can also be achieved through JNJ or P2X purinoceptor 7 (P2X7) siRNA, which inhibit calcium/calmodulin-dependent protein kinase II (CaMKII) activation, prevent 5-LOX nuclear translocation, and improve lysosomal function. Furthermore, P2X7 siRNA also improved neurological function, lysosomal function and microglial function in SAH mice.
Activation of P2X7-CaMKII after SAH promotes 5-LOX nuclear translocation, increases the LTB4/LXA4 ratio, elevates intracellular Ca concentration, and impairs lysosomal and microglial function.
The online version contains supplementary material available at 10.1186/s12974-025-03530-3.
蛛网膜下腔出血(SAH)是神经外科常见的急性病症,小胶质细胞功能在决定患者预后方面起着关键作用。然而,其中涉及的机制复杂,需要深入研究。在我们的研究中,我们结合转录组学和代谢组学方法来确定小胶质细胞功能的关键调节因子,为SAH治疗的潜在治疗策略提供新的见解。
使用旷场试验、转棒试验和尼氏染色评估SAH小鼠的神经功能。在体外SAH模型中,通过整合转录组学和代谢组学确定调节小胶质细胞功能的关键途径和基因。采用酶联免疫吸附测定、免疫荧光、蛋白质印迹、实时聚合酶链反应、pHrodo和溶酶体示踪剂来评估溶酶体和小胶质细胞功能。
在SAH小鼠中,神经功能和小胶质细胞功能在第一天均显著受损,但随时间推移有所恢复。转录组学和代谢组学的综合结果确定5-脂氧合酶(5-LOX)是SAH后调节小胶质细胞功能的关键靶点。外源性给予消退素D1(RvD1)以抑制5-LOX核转位或直接补充脂oxin A4(LXA4)以调节白三烯B4(LTB4)/LXA4比值,可以改善溶酶体酸化,减轻溶酶体功能受损,并增强吞噬作用,同时减少炎症反应。通过JNJ或P2X嘌呤受体7(P2X7)小干扰RNA抑制钙/钙调蛋白依赖性蛋白激酶II(CaMKII)活化,防止5-LOX核转位并改善溶酶体功能,也可以实现对小胶质细胞功能的保护。此外,P2X7小干扰RNA还改善了SAH小鼠的神经功能、溶酶体功能和小胶质细胞功能。
SAH后P2X7-CaMKII的激活促进5-LOX核转位,增加LTB4/LXA4比值,升高细胞内钙浓度,并损害溶酶体和小胶质细胞功能。
在线版本包含可在10.1186/s12974-025-03530-3获取的补充材料。