Santos Renata Trabach, Braga Cássia Lisboa, de Sá Freire Onofre Maria Eduarda, da Silva Carla Medeiros, de Novaes Rocha Nazareth, Veras Rodrigo Gonzaga, de Souza Serra Sabrina Sodré, Teixeira Douglas Esteves, Dos Santos Alves Sarah Aparecida, Miranda Beatriz Toja, Pereira Miria Gomes, Neves Celso Caruso, de Oliveira Garcia Monique Ramos, Takiya Christina Maeda, Rocco Patricia Rieken Macêdo, Cruz Fernanda Ferreira, Silva Pedro Leme
Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.
Physiology and Pharmacology Department, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil.
Stem Cell Res Ther. 2025 Aug 29;16(1):466. doi: 10.1186/s13287-025-04604-y.
BACKGROUND: During pulmonary arterial hypertension (PAH), cardiac cells develop a hypertrophic and apoptosis-resistant phenotype. Mesenchymal stromal cell (MSC) therapy has been shown to mitigate pulmonary vascular remodeling in PAH; however, successful application is limited by low potency and the need for a high number of MSCs. MSCs exposed to hypoxia release more extracellular vesicles (EV)s with different content than normoxia. We aimed to evaluate the proteomic profile and therapeutic effects of EVs derived from normoxia- and hypoxia-preconditioned MSCs on cardiac tissue remodeling in experimental PAH. METHODS: Isolated bone marrow MSCs were subjected to normoxia (N, 21%O) or hypoxia (H, 1%O) for 48 h and EVs were collected from the MSCs by ultracentrifugation. Proteomic data of the EVs were reanalyzed using PatternLab for Proteomics 5.0. Thirty-two male Wistar rats were randomly assigned to PAH plus intraperitoneal monocrotaline (60 mg/kg) or control (CTRL) with saline. On day 14, PAH animals received saline (1 mL/kg; PAH-SAL), EV-N (EVs from 1 × 10 MSCs; PAH-EV-N) or EV-H (EVs from 1 × 10 MSCs; PAH-EV-H) by jugular vein. On day 28, right ventricular systolic pressure (RVSP), pulmonary acceleration time/pulmonary ejection time (PAT/PET) ratio, right ventricle (RV) outflow diameter, and right ventricular hypertrophy (RVH) index were evaluated. The heart was harvested for histologic and molecular biology analyses. RESULTS: Among 695 proteins identified, 203 were present only in EV-H and 51 in EV-N. EV-H was enriched in proteins involved in the negative regulation of mitogen-activated protein kinase and apoptosis pathways. On day 28, both EV-N and EV-H therapies decreased RVSP compared with PAH-SAL (32 ± 5 mmHg and 29 ± 4 mmHg versus 39 ± 2 mmHg; p < 0.01). Only EV-H increased PAT/PET, reduced RV outflow diameter, and the RVH index compared with PAH-SAL. The expressions of c-Myc, a marker of myocardial injury, and p-GSK3β-Ser9, a proliferative marker, were higher in the PAH-SAL group than in the CTRL group. EV-N and EV-H decreased c-Myc expression, but only EV-H significantly reduced p-GSK3β-Ser9. CONCLUSION: EV-N and EV-H reduced RVSP, but only EV-H improved RVH and RV outflow diameter, increased the PAT/PET ratio, and downregulated GSK3β protein levels. EVs from hypoxia-preconditioned MSCs demonstrated greater cardioprotective effects than those from normoxia-conditioned MSCs.
背景:在肺动脉高压(PAH)期间,心脏细胞会形成肥厚且抗凋亡的表型。间充质基质细胞(MSC)疗法已被证明可减轻PAH中的肺血管重塑;然而,其成功应用受到效力低下和需要大量MSC的限制。与常氧相比,暴露于低氧的MSC释放出更多具有不同成分的细胞外囊泡(EV)。我们旨在评估常氧和低氧预处理的MSC衍生的EV对实验性PAH心脏组织重塑的蛋白质组学特征和治疗效果。 方法:将分离的骨髓MSC置于常氧(N,21%O)或低氧(H,1%O)环境中48小时,然后通过超速离心从MSC中收集EV。使用蛋白质组学PatternLab 5.0对EV的蛋白质组数据进行重新分析。32只雄性Wistar大鼠被随机分为PAH加腹腔注射野百合碱(60mg/kg)组或生理盐水对照组(CTRL)。在第14天,PAH动物通过颈静脉接受生理盐水(1mL/kg;PAH-SAL)、EV-N(来自1×10个MSC的EV;PAH-EV-N)或EV-H(来自1×10个MSC的EV;PAH-EV-H)。在第28天,评估右心室收缩压(RVSP)、肺动脉加速时间/肺动脉射血时间(PAT/PET)比值、右心室(RV)流出道直径和右心室肥厚(RVH)指数。摘取心脏进行组织学和分子生物学分析。 结果:在鉴定出的695种蛋白质中,203种仅存在于EV-H中,51种仅存在于EV-N中。EV-H富含参与丝裂原活化蛋白激酶和凋亡途径负调控的蛋白质。在第28天,与PAH-SAL组相比,EV-N和EV-H疗法均降低了RVSP(分别为32±5mmHg和29±4mmHg,而PAH-SAL组为39±2mmHg;p<0.01)。与PAH-SAL组相比,只有EV-H增加了PAT/PET,减小了RV流出道直径和RVH指数。心肌损伤标志物c-Myc和增殖标志物p-GSK3β-Ser9的表达在PAH-SAL组中高于CTRL组。EV-N和EV-H降低了c-Myc的表达,但只有EV-H显著降低了p-GSK3β-Ser9。 结论:EV-N和EV-H降低了RVSP,但只有EV-H改善了RVH和RV流出道直径,增加了PAT/PET比值,并下调了GSK3β蛋白水平。低氧预处理的MSC衍生的EV比常氧预处理的MSC衍生的EV具有更强的心脏保护作用。
J Bone Miner Res. 2024-10-29
Stem Cell Res Ther. 2025-2-4
Mol Cell Biochem. 2025-2
Nucleic Acids Res. 2024-7-5
J Extracell Vesicles. 2024-2
Curr Vasc Pharmacol. 2024