文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

缺氧预处理间充质基质细胞来源的细胞外囊泡在实验性肺动脉高压中的心脏保护作用

Cardioprotective effects of extracellular vesicles from hypoxia-preconditioned mesenchymal stromal cells in experimental pulmonary arterial hypertension.

作者信息

Santos Renata Trabach, Braga Cássia Lisboa, de Sá Freire Onofre Maria Eduarda, da Silva Carla Medeiros, de Novaes Rocha Nazareth, Veras Rodrigo Gonzaga, de Souza Serra Sabrina Sodré, Teixeira Douglas Esteves, Dos Santos Alves Sarah Aparecida, Miranda Beatriz Toja, Pereira Miria Gomes, Neves Celso Caruso, de Oliveira Garcia Monique Ramos, Takiya Christina Maeda, Rocco Patricia Rieken Macêdo, Cruz Fernanda Ferreira, Silva Pedro Leme

机构信息

Laboratory of Pulmonary Investigation, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.

Physiology and Pharmacology Department, Biomedical Institute, Fluminense Federal University, Niteroi, RJ, Brazil.

出版信息

Stem Cell Res Ther. 2025 Aug 29;16(1):466. doi: 10.1186/s13287-025-04604-y.


DOI:10.1186/s13287-025-04604-y
PMID:40877897
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12395730/
Abstract

BACKGROUND: During pulmonary arterial hypertension (PAH), cardiac cells develop a hypertrophic and apoptosis-resistant phenotype. Mesenchymal stromal cell (MSC) therapy has been shown to mitigate pulmonary vascular remodeling in PAH; however, successful application is limited by low potency and the need for a high number of MSCs. MSCs exposed to hypoxia release more extracellular vesicles (EV)s with different content than normoxia. We aimed to evaluate the proteomic profile and therapeutic effects of EVs derived from normoxia- and hypoxia-preconditioned MSCs on cardiac tissue remodeling in experimental PAH. METHODS: Isolated bone marrow MSCs were subjected to normoxia (N, 21%O) or hypoxia (H, 1%O) for 48 h and EVs were collected from the MSCs by ultracentrifugation. Proteomic data of the EVs were reanalyzed using PatternLab for Proteomics 5.0. Thirty-two male Wistar rats were randomly assigned to PAH plus intraperitoneal monocrotaline (60 mg/kg) or control (CTRL) with saline. On day 14, PAH animals received saline (1 mL/kg; PAH-SAL), EV-N (EVs from 1 × 10 MSCs; PAH-EV-N) or EV-H (EVs from 1 × 10 MSCs; PAH-EV-H) by jugular vein. On day 28, right ventricular systolic pressure (RVSP), pulmonary acceleration time/pulmonary ejection time (PAT/PET) ratio, right ventricle (RV) outflow diameter, and right ventricular hypertrophy (RVH) index were evaluated. The heart was harvested for histologic and molecular biology analyses. RESULTS: Among 695 proteins identified, 203 were present only in EV-H and 51 in EV-N. EV-H was enriched in proteins involved in the negative regulation of mitogen-activated protein kinase and apoptosis pathways. On day 28, both EV-N and EV-H therapies decreased RVSP compared with PAH-SAL (32 ± 5 mmHg and 29 ± 4 mmHg versus 39 ± 2 mmHg; p < 0.01). Only EV-H increased PAT/PET, reduced RV outflow diameter, and the RVH index compared with PAH-SAL. The expressions of c-Myc, a marker of myocardial injury, and p-GSK3β-Ser9, a proliferative marker, were higher in the PAH-SAL group than in the CTRL group. EV-N and EV-H decreased c-Myc expression, but only EV-H significantly reduced p-GSK3β-Ser9. CONCLUSION: EV-N and EV-H reduced RVSP, but only EV-H improved RVH and RV outflow diameter, increased the PAT/PET ratio, and downregulated GSK3β protein levels. EVs from hypoxia-preconditioned MSCs demonstrated greater cardioprotective effects than those from normoxia-conditioned MSCs.

摘要

背景:在肺动脉高压(PAH)期间,心脏细胞会形成肥厚且抗凋亡的表型。间充质基质细胞(MSC)疗法已被证明可减轻PAH中的肺血管重塑;然而,其成功应用受到效力低下和需要大量MSC的限制。与常氧相比,暴露于低氧的MSC释放出更多具有不同成分的细胞外囊泡(EV)。我们旨在评估常氧和低氧预处理的MSC衍生的EV对实验性PAH心脏组织重塑的蛋白质组学特征和治疗效果。 方法:将分离的骨髓MSC置于常氧(N,21%O)或低氧(H,1%O)环境中48小时,然后通过超速离心从MSC中收集EV。使用蛋白质组学PatternLab 5.0对EV的蛋白质组数据进行重新分析。32只雄性Wistar大鼠被随机分为PAH加腹腔注射野百合碱(60mg/kg)组或生理盐水对照组(CTRL)。在第14天,PAH动物通过颈静脉接受生理盐水(1mL/kg;PAH-SAL)、EV-N(来自1×10个MSC的EV;PAH-EV-N)或EV-H(来自1×10个MSC的EV;PAH-EV-H)。在第28天,评估右心室收缩压(RVSP)、肺动脉加速时间/肺动脉射血时间(PAT/PET)比值、右心室(RV)流出道直径和右心室肥厚(RVH)指数。摘取心脏进行组织学和分子生物学分析。 结果:在鉴定出的695种蛋白质中,203种仅存在于EV-H中,51种仅存在于EV-N中。EV-H富含参与丝裂原活化蛋白激酶和凋亡途径负调控的蛋白质。在第28天,与PAH-SAL组相比,EV-N和EV-H疗法均降低了RVSP(分别为32±5mmHg和29±4mmHg,而PAH-SAL组为39±2mmHg;p<0.01)。与PAH-SAL组相比,只有EV-H增加了PAT/PET,减小了RV流出道直径和RVH指数。心肌损伤标志物c-Myc和增殖标志物p-GSK3β-Ser9的表达在PAH-SAL组中高于CTRL组。EV-N和EV-H降低了c-Myc的表达,但只有EV-H显著降低了p-GSK3β-Ser9。 结论:EV-N和EV-H降低了RVSP,但只有EV-H改善了RVH和RV流出道直径,增加了PAT/PET比值,并下调了GSK3β蛋白水平。低氧预处理的MSC衍生的EV比常氧预处理的MSC衍生的EV具有更强的心脏保护作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55e0/12395730/99b5405854e5/13287_2025_4604_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55e0/12395730/d8494e1e8e43/13287_2025_4604_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55e0/12395730/76647dd76534/13287_2025_4604_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55e0/12395730/c4a8769e8e6c/13287_2025_4604_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55e0/12395730/c9cfc669e670/13287_2025_4604_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55e0/12395730/58c3ab6a4b4a/13287_2025_4604_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55e0/12395730/2b4f1cd476b7/13287_2025_4604_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55e0/12395730/99b5405854e5/13287_2025_4604_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55e0/12395730/d8494e1e8e43/13287_2025_4604_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55e0/12395730/76647dd76534/13287_2025_4604_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55e0/12395730/c4a8769e8e6c/13287_2025_4604_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55e0/12395730/c9cfc669e670/13287_2025_4604_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55e0/12395730/58c3ab6a4b4a/13287_2025_4604_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55e0/12395730/2b4f1cd476b7/13287_2025_4604_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/55e0/12395730/99b5405854e5/13287_2025_4604_Fig7_HTML.jpg

相似文献

[1]
Cardioprotective effects of extracellular vesicles from hypoxia-preconditioned mesenchymal stromal cells in experimental pulmonary arterial hypertension.

Stem Cell Res Ther. 2025-8-29

[2]
Therapeutic effects of hypoxia-preconditioned bone marrow-derived mesenchymal stromal cells and their extracellular vesicles in experimental pulmonary arterial hypertension.

Life Sci. 2023-9-15

[3]
Extracellular vesicles derived from clonal mesenchymal stromal cells preconditioned by indirect hypoxia modulate immune responses in diabetic mice more effectively than directly preconditioned vesicles.

Stem Cell Res Ther. 2025-8-26

[4]
Endothelial cell-derived extracellular vesicles modulate the therapeutic efficacy of mesenchymal stem cells through IDH2/TET pathway in ARDS.

Cell Commun Signal. 2024-5-27

[5]
Isolation and characterization of bone mesenchymal cell small extracellular vesicles using a novel mouse model.

J Bone Miner Res. 2024-10-29

[6]
Human Infrapatellar Fat Pad Mesenchymal Stem Cell-derived Extracellular Vesicles Purified by Anion Exchange Chromatography Suppress Osteoarthritis Progression in a Mouse Model.

Clin Orthop Relat Res. 2024-7-1

[7]
Hypoxic extracellular vesicles from hiPSCs protect cardiomyocytes from oxidative damage by transferring antioxidant proteins and enhancing Akt/Erk/NRF2 signaling.

Cell Commun Signal. 2024-7-9

[8]
Hypoxia-Induced and Glucuronic Acid-Modified Extracellular Vesicles from Mesenchymal Stromal Cells Treat Pulmonary Arterial Hypertension by Improving Vascular Remodeling.

Nano Lett. 2024-12-25

[9]
Large-scale bioreactor production of extracellular vesicles from mesenchymal stromal cells for treatment of acute radiation syndrome.

Stem Cell Res Ther. 2024-3-13

[10]
In-vitro immunomodulatory efficacy of extracellular vesicles derived from TGF-β1/IFN-γ dual licensed human bone marrow mesenchymal stromal cells.

Stem Cell Res Ther. 2025-7-9

本文引用的文献

[1]
Fate and long-lasting therapeutic effects of mesenchymal stromal/stem-like cells: mechanistic insights.

Stem Cell Res Ther. 2025-2-4

[2]
GMP-compliant extracellular vesicles derived from umbilical cord mesenchymal stromal cells: manufacturing and pre-clinical evaluation in ARDS treatment.

Cytotherapy. 2024-9

[3]
Ethyl pyruvate alleviates pulmonary arterial hypertension via PI3K-Akt signaling.

Mol Cell Biochem. 2025-2

[4]
MetaboAnalyst 6.0: towards a unified platform for metabolomics data processing, analysis and interpretation.

Nucleic Acids Res. 2024-7-5

[5]
Minimal information for studies of extracellular vesicles (MISEV2023): From basic to advanced approaches.

J Extracell Vesicles. 2024-2

[6]
Pharmacological Agents and Potential New Therapies in Pulmonary Arterial Hypertension.

Curr Vasc Pharmacol. 2024

[7]
Ser14 phosphorylation of Bcl-xL mediates compensatory cardiac hypertrophy in male mice.

Nat Commun. 2023-9-19

[8]
Therapeutic effects of hypoxia-preconditioned bone marrow-derived mesenchymal stromal cells and their extracellular vesicles in experimental pulmonary arterial hypertension.

Life Sci. 2023-9-15

[9]
Standardization of extracellular vesicle concentration measurements by flow cytometry: the past, present, and future.

J Thromb Haemost. 2023-8

[10]
Extracellular Vesicles from Different Sources of Mesenchymal Stromal Cells Have Distinct Effects on Lung and Distal Organs in Experimental Sepsis.

Int J Mol Sci. 2023-5-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索