Suppr超能文献

重新设计用于二酮哌嗪中吲哚C3甲基化的转移酶支架。

Re-engineering a transferase scaffold for indole C3 methylation in diketopiperazines.

作者信息

Haase Mona, Weiergräber Oliver H, Pietruszka Jörg

机构信息

Institute of Bioorganic Chemistry & Bioeconomy Science Center (BioSC), Heinrich Heine University Düsseldorf in Forschungszentrum Jülich, Jülich, Germany.

Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany.

出版信息

Protein Sci. 2025 Sep;34(9):e70254. doi: 10.1002/pro.70254.

Abstract

The pyrroloindole (hexahydropyrrolo[2,3-b]indole, HPI) structural motif is present in a wide range of natural products with various biological activities, yet its chemical synthesis poses a challenge, particularly regarding methylation at the indole C3 position. In nature, S-adenosyl methionine (SAM)-dependent methyltransferases efficiently catalyze this reaction with high stereoselectivity. This study presents the investigation and rational re-design of a potential methyltransferase, termed SeMT, from the actinomycete Saccharopolyspora erythraea. While its three-dimensional structure elucidated via X-ray crystallography confirmed extensive structural similarity to cyclic dipeptide-processing methyltransferases such as SgMT, its putative catalytic center is clearly divergent. Accordingly, wild-type SeMT displayed minimal activity with diketopiperazine (DKP) substrates, triggering an extensive mutagenesis effort aimed at iteratively enhancing this methyltransferase function. This work yielded a variant with appreciable activity, which was comprehensively characterized. Notably, a specific mutation within the catalytic triad of SeMT proved critical not only for its own function but also for the temperature-activity profile of its homolog protein SgMT. Beyond the specific properties of SeMT, these findings hence provide important insights into the active center architecture of indole C3-methyltransferases, supporting further development of these enzymes into refined biocatalysts for synthetic applications.

摘要

吡咯并吲哚(六氢吡咯并[2,3 - b]吲哚,HPI)结构基序存在于多种具有不同生物活性的天然产物中,但其化学合成具有挑战性,特别是在吲哚C3位的甲基化方面。在自然界中,依赖S - 腺苷甲硫氨酸(SAM)的甲基转移酶能高效催化此反应并具有高立体选择性。本研究展示了对来自放线菌糖多孢红霉菌的一种潜在甲基转移酶(称为SeMT)的研究和合理重新设计。虽然通过X射线晶体学阐明的其三维结构证实与诸如SgMT等环二肽加工甲基转移酶有广泛的结构相似性,但其推定的催化中心明显不同。因此,野生型SeMT对二酮哌嗪(DKP)底物显示出最小活性,引发了旨在逐步增强这种甲基转移酶功能的广泛诱变工作。这项工作产生了一种具有可观活性的变体,并对其进行了全面表征。值得注意的是,SeMT催化三联体中的一个特定突变不仅对其自身功能至关重要,而且对其同源蛋白SgMT的温度 - 活性谱也至关重要。除了SeMT的特定性质外,这些发现因此为吲哚C3 - 甲基转移酶的活性中心结构提供了重要见解,支持将这些酶进一步开发成用于合成应用的精细生物催化剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验