Suppr超能文献

参与麦考酚酸生物合成的 O-甲基转移酶 MpaG' 对底物柔性的结构基础。

Structural basis for substrate flexibility of the O-methyltransferase MpaG' involved in mycophenolic acid biosynthesis.

机构信息

CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China.

State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China.

出版信息

Protein Sci. 2024 Sep;33(9):e5144. doi: 10.1002/pro.5144.

Abstract

MpaG' is an S-adenosyl-L-methionine (SAM)-dependent methyltransferase involved in the compartmentalized biosynthesis of mycophenolic acid (MPA), a first-line immunosuppressive drug for organ transplantations and autoimmune diseases. MpaG' catalyzes the 5-O-methylation of three precursors in MPA biosynthesis including demethylmycophenolic acid (DMMPA), 4-farnesyl-3,5-dihydroxy-6-methylphthalide (FDHMP), and an intermediate containing three fewer carbon atoms compared to FDHMP (FDHMP-3C) with different catalytic efficiencies. Here, we report the crystal structures of S-adenosyl-L-homocysteine (SAH)/DMMPA-bound MpaG', SAH/FDHMP-3C-bound MpaG', and SAH/FDHMP-bound MpaG' to understand the catalytic mechanism of MpaG' and structural basis for its substrate flexibility. Structural and biochemical analyses reveal that MpaG' utilizes the catalytic dyad H306-E362 to deprotonate the C5 hydroxyl group of the substrates for the following methylation. The three substrates with differently modified farnesyl moieties are well accommodated in a large semi-open substrate binding pocket with the orientation of their phthalide moiety almost identical. Based on the structure-directed mutagenesis, a single mutant MpaG' is engineered with significantly improved catalytic efficiency for all three substrates. This study expands the mechanistic understanding and the pocket engineering strategy for O-methyltransferases involved in fungal natural product biosynthesis. Our research also highlights the potential of O-methyltransferases to modify diverse substrates by protein design and engineering.

摘要

MpaG' 是一种 S-腺苷-L-蛋氨酸 (SAM) 依赖性甲基转移酶,参与麦考酚酸 (MPA) 的区室化生物合成,MPA 是器官移植和自身免疫性疾病的一线免疫抑制剂。MpaG' 催化 MPA 生物合成中三种前体的 5-O-甲基化,包括脱甲基麦考酚酸 (DMMPA)、4-香叶基-3,5-二羟基-6-甲基邻苯二甲酸 (FDHMP) 和一种与 FDHMP 相比少三个碳原子的中间产物 (FDHMP-3C),其催化效率不同。在这里,我们报告了 S-腺苷-L-同型半胱氨酸 (SAH)/DMMPA 结合的 MpaG'、SAH/FDHMP-3C 结合的 MpaG' 和 SAH/FDHMP 结合的 MpaG' 的晶体结构,以了解 MpaG' 的催化机制和结构基础,以及其底物灵活性。结构和生化分析表明,MpaG' 利用催化二联体 H306-E362 去质子化底物的 C5 羟基,用于随后的甲基化。具有不同修饰的香叶基部分的三种底物在一个大的半开放底物结合口袋中得到很好的容纳,其邻苯二甲酸部分的取向几乎相同。基于结构导向的突变,单个突变 MpaG' 被设计为对所有三种底物的催化效率都有显著提高。这项研究扩展了对真菌天然产物生物合成中涉及的 O-甲基转移酶的机制理解和口袋工程策略。我们的研究还突出了通过蛋白质设计和工程修饰 O-甲基转移酶来修饰多种底物的潜力。

相似文献

本文引用的文献

2
-Adenosylmethionine: more than just a methyl donor.- 腺苷蛋氨酸:不只是甲基供体。
Nat Prod Rep. 2023 Sep 20;40(9):1521-1549. doi: 10.1039/d2np00086e.
5
Highly accurate protein structure prediction with AlphaFold.利用 AlphaFold 进行高精度蛋白质结构预测。
Nature. 2021 Aug;596(7873):583-589. doi: 10.1038/s41586-021-03819-2. Epub 2021 Jul 15.
8
Compartmentalized biosynthesis of fungal natural products.真菌天然产物的分隔生物合成。
Curr Opin Biotechnol. 2021 Jun;69:128-135. doi: 10.1016/j.copbio.2020.12.006. Epub 2021 Jan 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验