Xu Qiao-Fei, Wu Ruo-Tong, Long La-Sheng, Zheng Lan-Sun
Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
Acc Chem Res. 2025 Aug 29. doi: 10.1021/acs.accounts.5c00502.
ConspectusAdiabatic demagnetization refrigeration (ADR), which exploits the magnetocaloric effect (MCE), remains the only helium-free refrigeration technology capable of reaching temperatures below 1 K. With the rapid growth of quantum computing and astronomical observation, there is a pressing need for large-capacity ADR systems─underscoring the critical demand for magnetic refrigerants capable of generating substantial magnetic entropy changes (-Δ) at millikelvin temperatures. However, a long-standing challenge persists: achieving both large -Δ values and low magnetic ordering temperatures (). This trade-off has limited the performance of existing refrigerants in the sub-Kelvin regime, thereby hindering ADR advancement. To address this, our work focuses on the rational design of next-generation refrigerants. Rather than relying on readily available materials, we emphasize the importance of tuning key magnetic parameters, , exchange and dipolar interactions. This approach began with the discovery that incorporating fluoride (F) bridges into antiferromagnetic frameworks transforms their magnetic behavior, shifting it from antiferromagnetic to weak ferromagnetic and lowering from 1.4 K to 1.0 K while yielding large -Δ values. Building on this concept, we extended the strategy to the Gd(OH)F. In particular, Gd(OH)F combines weak magnetic interactions with high magnetic density, achieving record -Δ values and demonstrating a robust route to simultaneously enhance -Δ and suppress . By integrating the mean-field approximation with quantum Monte Carlo (QMC) simulations, we accurately predicted values in systems with weak exchange and low anisotropy, such as GdCOF, Gd(HCOO)F, Gd(SO)·8HO, GdF and Gd(HCOO), revealing the dominant role of dipolar interactions in determining . Expanding this framework, we introduced Gd into Yb-based compounds characterized by intrinsically weak exchange and dipolar interactions. This doping strategy enabled the realization of low and large -Δ values at ultralow temperatures, demonstrating that a balance between competing magnetic interactions and chemical disorder can achieve the coexistence of high -Δ and low . To translate these insights into practical ADR systems, we synthesized LiGdYbF and investigated its performance in an ADR setup. Notably, LiGdYbF cooled a test sample to 160 mK and delivered a specific cooling capacity more than twice that of the commercial refrigerant CrK(SO)·12HO. Additionally, by integrating high magnetic density with weak exchange and dipolar interactions in a frustrated magnet, we developed KYbF, which achieved significant -Δ with a low . Quasi-adiabatic demagnetization experiments with KYbF reached a minimum temperature of 27.2 mK, highlighting its promise as a next-generation ADR refrigerant. In summary, we proposed and validated rational design strategies for high-performance ADR refrigerants, achieving enhanced -Δ across the cryogenic temperatures below 4 K. From theoretical modeling to experimental realization, our work lays a solid foundation for advancing ADR technologies in both fundamental research and applied low-temperature systems.
概述
利用磁热效应(MCE)的绝热去磁制冷(ADR)仍然是唯一能够达到低于1K温度的无氦制冷技术。随着量子计算和天文观测的迅速发展,迫切需要大容量的ADR系统,这突出了对能够在毫开尔文温度下产生大量磁熵变(-Δ)的磁性制冷剂的关键需求。然而,一个长期存在的挑战依然存在:要同时实现大的-Δ值和低的磁有序温度()。这种权衡限制了现有制冷剂在低于1K温度区域的性能,从而阻碍了ADR技术的进步。为了解决这个问题,我们的工作重点是下一代制冷剂的合理设计。我们强调调整关键磁参数、交换和偶极相互作用的重要性,而不是依赖现成的材料。这种方法始于发现将氟化物(F)桥引入反铁磁框架会改变其磁行为,使其从反铁磁转变为弱铁磁,并将从1.4K降至1.0K,同时产生大的-Δ值。基于这一概念,我们将该策略扩展到了Gd(OH)F。特别是,Gd(OH)F将弱磁相互作用与高磁密度相结合,实现了创纪录的-Δ值,并展示了一条同时增强-Δ和抑制的稳健途径。通过将平均场近似与量子蒙特卡罗(QMC)模拟相结合,我们准确预测了具有弱交换和低各向异性的系统(如GdCOF、Gd(HCOO)F)、Gd(SO)·8HO、GdF和Gd(HCOO)中的值,揭示了偶极相互作用在决定中的主导作用。扩展这个框架,我们将Gd引入到以固有弱交换和偶极相互作用为特征的Yb基化合物中。这种掺杂策略能够在超低温下实现低的和大的-Δ值,表明竞争磁相互作用和化学无序之间的平衡可以实现高-Δ和低的共存。为了将这些见解转化为实际的ADR系统,我们合成了LiGdYbF,并在ADR装置中研究了其性能。值得注意的是,LiGdYbF将测试样品冷却到了160mK,并提供了比商用制冷剂CrK(SO)·12HO高出两倍多的比制冷量。此外,通过在受挫磁体中将高磁密度与弱交换和偶极相互作用相结合,我们开发了KYbF,它在低的情况下实现了显著的-Δ。用KYbF进行的准绝热去磁实验达到了27.2mK的最低温度,突出了其作为下一代ADR制冷剂的潜力。总之,我们提出并验证了高性能ADR制冷剂的合理设计策略,在低于4K的低温范围内实现了增强的-Δ。从理论建模到实验实现,我们的工作为在基础研究和应用低温系统中推进ADR技术奠定了坚实的基础。