Suppr超能文献

超越特定应用设计:用于TiO/GaN纳米光子超表面光学特性预测的通用深度学习框架。

Beyond application-specific design: a generalized deep learning framework for optical property prediction in TiO/GaN nanophotonic metasurfaces.

作者信息

Anwar Adrita, Tasin Shahamat Mustavi, Bhuiyan Mahabub Alam, Yeachin Nymul, Islam Sharnali, Ali Khaleda

机构信息

Department of Electrical and Electronic Engineering (EEE), University of Dhaka (DU) Dhaka 1000 Bangladesh

Department of Mechanical and Aerospace Engineering, University of Central Florida Orlando Florida 32816 USA.

出版信息

Nanoscale Adv. 2025 Aug 6. doi: 10.1039/d5na00550g.

Abstract

Metalenses have garnered significant attention for their remarkable ability to precisely focus light while obviating the inconvenience and intricacy associated with conventional curved lenses. Identifying the best response for these phase gradient optical devices necessitates intensive trial and error analysis of meta-atoms with various shapes, materials and dimensions. In this work, we present an artificial intelligence-based framework to predict the highly skewed, complex transmission and phase responses of the constituent nanorods. Here, we employed a transfer learning model to train on two extensive datasets comprising the optical responses of gallium nitride and titanium dioxide nanopillars, each integrated onto silica substrates. The accuracy of the dataset was assessed through experimental investigation, particularly inspecting transmittance and the refractive index for a TiO layer of a certain height. A reasonable agreement has been obtained for both cases. The optimized algorithm estimates the performance in terms of amplitude and phase, attaining minimum Mean Squared Error (MSE) values of 2.3 × 10 and 1.31 × 10, respectively, for a wavelength range of 600-700 nm. To validate the effectiveness of our proposed approach, focusing performance was exhibited for two flat lenses: a smaller lens with a 20 μm diameter and a larger lens featuring an identical diameter and focal length of 100 μm. A brief study on the effects of varying angles of incident light has also been conducted. While minimizing the need for typically tedious and at times ineffective repetitive analyses, the parameterized datasets can be beneficial for developing different optical components.

摘要

超透镜因其能够精确聚焦光线,同时避免传统曲面透镜带来的不便与复杂性而备受关注。确定这些相位梯度光学器件的最佳响应,需要对具有各种形状、材料和尺寸的超原子进行大量的试错分析。在这项工作中,我们提出了一个基于人工智能的框架,用于预测组成纳米棒的高度不对称、复杂的透射和相位响应。在这里,我们采用了一个迁移学习模型,在两个广泛的数据集上进行训练,这两个数据集分别包含集成在二氧化硅衬底上的氮化镓和二氧化钛纳米柱的光学响应。通过实验研究,特别是检查一定高度的TiO层的透射率和折射率,对数据集的准确性进行了评估。两种情况都获得了合理的一致性。优化算法在幅度和相位方面估计性能,在600-700nm波长范围内,均方误差(MSE)最小值分别达到2.3×10和1.31×10。为了验证我们提出的方法的有效性,展示了两个平面透镜的聚焦性能:一个直径为20μm的较小透镜和一个直径相同、焦距为100μm的较大透镜。还对不同入射角的影响进行了简要研究。虽然最大限度地减少了通常繁琐且有时无效的重复分析的需求,但参数化数据集对于开发不同的光学组件可能是有益的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecfd/12379349/3bac14cf55ff/d5na00550g-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验