Suppr超能文献

药物依从性技术:基于特征的分类法

Medication Adherence Technologies: A Classification Taxonomy Based on Features.

作者信息

Baby Bincy, Gill Jasdeep Kaur, Faisal Sadaf, Elba Ghada, Park SooMin, McKinnon Annette, Patterson Kirk, Guilcher Sara J T, Chang Feng, Lee Linda, Burns Catherine, Griffin Ryan, Patel Tejal

机构信息

School of Pharmacy, University of Waterloo, Ontario, Canada.

Canadian Pharmacists Association, Ontario, Canada.

出版信息

Mayo Clin Proc Digit Health. 2025 Jun 9;3(3):100237. doi: 10.1016/j.mcpdig.2025.100237. eCollection 2025 Sep.

Abstract

OBJECTIVE

To develop a comprehensive classification system for medication adherence technologies based on an inventory of characteristics and features of existing technology.

PARTICIPANTS AND METHODS

Using a 3-stage approach methodology-development, validation, and evaluation, the study adopted the taxonomy development method and was conducted from February 1, 2023 to July 31, 2024. In the development stage, medication adherence technologies were defined, end users were identified, and a meta-characteristic was determined; using both empirical-to-conceptual and conceptual-to-empirical approaches, dimensions and characteristics were identified. The taxonomy was validated through the Delphi consensus approach and classifying 20 sample medication adherence technologies and evaluated by mapping to codes identified from a qualitative study.

RESULTS

After undergoing 8 iterations, which included incorporating feedback from a Delphi consensus survey, the final taxonomy comprised 7 dimensions, 25 subdimensions, and 320 characteristics. These key dimensions include Physical Features, Display, Connectivity, System Alert, Data Collection and Management, Operations, and Integration. The taxonomy was considered complete and valuable once all preestablished ending conditions were met, and its applicability and comprehensiveness were verified by comparing various medication adherence technologies and mapping to codes identified from a qualitative study.

CONCLUSION

This study successfully establishes the first comprehensive classification system for medication adherence technologies based on features, addressing a critical gap in literature. The taxonomy provides a structured framework for categorizing and evaluating technologies, supporting usability testing and the selection of appropriate devices tailored to the unique needs of older adults.

摘要

目的

基于现有技术的特征清单,开发一个全面的药物依从性技术分类系统。

参与者与方法

该研究采用三阶段方法(方法开发、验证和评估),采用分类法开发方法,于2023年2月1日至2024年7月31日进行。在开发阶段,定义了药物依从性技术,确定了最终用户,并确定了一个元特征;采用从经验到概念和从概念到经验的方法,确定了维度和特征。通过德尔菲共识法对分类法进行验证,并对20种样本药物依从性技术进行分类,并通过映射到从定性研究中确定的代码进行评估。

结果

经过8次迭代,包括纳入德尔菲共识调查的反馈,最终分类法包括7个维度、25个子维度和320个特征。这些关键维度包括物理特征、显示、连接性、系统警报、数据收集与管理、操作和集成。一旦满足所有预先设定的结束条件,该分类法被认为是完整且有价值的,并且通过比较各种药物依从性技术并映射到从定性研究中确定的代码,验证了其适用性和全面性。

结论

本研究成功地基于特征建立了首个全面的药物依从性技术分类系统,填补了文献中的关键空白。该分类法为技术的分类和评估提供了一个结构化框架,支持可用性测试以及为老年人的独特需求选择合适的设备。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d90b/12381639/1b07c40926ec/gr1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验