Zhang Daohong, Liu Wenkai, Feng Lang, Feng Yuming, Yu Yang, Cheng Tinghai, Han Dong, Li Hengyu
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China.
School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China.
Research (Wash D C). 2025 Aug 27;8:0856. doi: 10.34133/research.0856. eCollection 2025.
Droplet microfluidics is a rapidly evolving technology enabling precise control and manipulation of small-volume droplets, typically ranging from picoliters to nanoliters, offering important potential for biomedical applications. By generating highly uniform droplets with size variation below 5% and at high frequencies exceeding 10,000 droplets per second using techniques such as flow focusing, this approach facilitates high-throughput experimentation with minimal reagent consumption. These features make droplet microfluidics invaluable for single-cell analysis, drug screening, and disease diagnostics. Recent advancements in integrating droplet microfluidics with biological and clinical workflows have expanded possibilities for personalized medicine, early disease detection, and high-resolution cellular assays. This review provides an overview of recent progress in droplet microfluidics, focusing on key techniques for droplet generation, manipulation, and detection. It explores their applications in cutting-edge biomedical research, including single-cell analysis, 3-dimensional cell culture, drug development, and cancer research. Additionally, we discuss current challenges, such as improving reproducibility, scalability, and system integration, and outline promising future directions to fully realize the potential of droplet microfluidics in biomedicine.
微滴微流控技术是一项快速发展的技术,能够精确控制和操纵小体积微滴,其体积通常在皮升至纳升范围内,在生物医学应用方面具有重要潜力。通过使用诸如流动聚焦等技术,每秒可产生超过10000个微滴的高频且尺寸变化低于5%的高度均匀微滴,这种方法有助于以最少的试剂消耗进行高通量实验。这些特性使微滴微流控技术在单细胞分析、药物筛选和疾病诊断方面具有极高价值。将微滴微流控技术与生物和临床工作流程相结合的最新进展,为个性化医疗、疾病早期检测和高分辨率细胞分析拓展了可能性。本综述概述了微滴微流控技术的最新进展,重点关注微滴生成、操纵和检测的关键技术。探讨了它们在前沿生物医学研究中的应用,包括单细胞分析、三维细胞培养、药物开发和癌症研究。此外,我们讨论了当前面临的挑战,如提高重现性、可扩展性和系统集成,并概述了有前景的未来方向,以充分实现微滴微流控技术在生物医学中的潜力。