Kim You-Jeong, Yun Dayoung, Lee Jungjoon K, Jung Cheulhee, Chung Aram J
Department of Bioengineering, Korea University, Seoul, Republic of Korea.
Interdisciplinary Program in Precision Public Health (PPH), Korea University, Seoul, Republic of Korea.
Nat Commun. 2024 Sep 16;15(1):8099. doi: 10.1038/s41467-024-52493-1.
Clustered regularly interspaced short palindromic repeats (CRISPR)-based editing tools have transformed the landscape of genome editing. However, the absence of a robust and safe CRISPR delivery method continues to limit its potential for therapeutic applications. Despite the emergence of various methodologies aimed at addressing this challenge, issues regarding efficiency and editing operations persist. We introduce a microfluidic gene delivery system, called droplet cell pincher (DCP), designed for highly efficient and safe genome editing. This approach combines droplet microfluidics with cell mechanoporation, enabling encapsulation and controlled passage of cells and CRISPR systems through a microscale constriction. Discontinuities created in cell and nuclear membranes upon passage facilitate the rapid CRISPR-system internalization into the nucleus. We demonstrate the successful delivery of various macromolecules, including mRNAs (98%) and plasmid DNAs (91%), using this platform, underscoring the versatility of the DCP and leveraging it to achieve successful genome engineering through CRISPR-Cas9 delivery. Our platform outperforms electroporation, the current state-of-the-art method, in three key areas: single knockouts (6.5-fold), double knockouts (3.8-fold), and knock-ins (~3.8-fold). These results highlight the potential of our platform as a next-generation tool for CRISPR engineering, with implications for clinical and biological cell-based research.
基于成簇规律间隔短回文重复序列(CRISPR)的编辑工具已经改变了基因组编辑的格局。然而,缺乏一种强大且安全的CRISPR递送方法仍然限制了其在治疗应用中的潜力。尽管出现了各种旨在应对这一挑战的方法,但效率和编辑操作方面的问题依然存在。我们引入了一种称为液滴细胞夹(DCP)的微流控基因递送系统,该系统专为高效且安全的基因组编辑而设计。这种方法将液滴微流控与细胞机械穿孔相结合,能够通过微尺度收缩实现细胞和CRISPR系统的封装及可控通过。细胞和细胞核膜在通过时产生的间断促进了CRISPR系统快速内化进入细胞核。我们使用该平台成功递送了包括mRNA(约98%)和质粒DNA(约91%)在内的各种大分子,强调了DCP的多功能性,并利用它通过CRISPR-Cas9递送实现成功的基因组工程。我们的平台在三个关键领域优于当前的先进方法——电穿孔:单基因敲除(约6.5倍)、双基因敲除(约3.8倍)和基因敲入(约3.8倍)。这些结果凸显了我们的平台作为CRISPR工程下一代工具的潜力,对基于临床和生物学细胞的研究具有重要意义。