Zhang Leitao, Zhang Yu, Xu Chaofan, Li Xinjian, Bao Yu, Sun Wenyuan, Li Xiang, Zhao Yutong, Cheng Qiuli, Wu Wenlan, Zhang Keke, Li Junbo
School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China.
School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang 471023, P.R. China.
JACS Au. 2025 Jul 29;5(8):3822-3832. doi: 10.1021/jacsau.5c00515. eCollection 2025 Aug 25.
Although photothermal reactions have gained extensive attention, their surface-localized naturewhere heat concentrates on nanoscale surfacesleads to suboptimal chemical reactivity. This study establishes an intrapore-confined thermal-field-driven reaction paradigm with unprecedented photothermal reactivity, through investigations of photothermal Congo Red (CR) pyrolysis in three-dimensional ordered macroporous carbon (OMC) versus nonmacroporous solid carbon (SC). Two model systems are constructed: (1) intrapore-confined configuration: fluorine-cerium nanodomains with ultrahigh CR adsorption capacity are anchored onto macroporous walls to achieve uniform CR distribution in OMC; (2) surface-localized pathway: CR is blended on the external surface of SC, decoupling intrapore confinement and surface localization mechanisms. The intrapore-confined system demonstrates transformative advantages: near-complete CR pyrolysis (>99.00 vs 39.89%), a 27.73-fold increase in rate constants (4.00 vs 0.14%/s), and a 30.71-fold enhancement in energy efficiency. Finite element analysis reveals an intrapore-confined thermal field within OMC due to its low thermal conductivity. Characterized by an inward-increasing temperature gradient, this field overcomes surface-localized limitations by reconstructing the temperature distribution, forming effective reaction driving forces. This work transcends conventional understanding of photothermal mechanisms and highlights macroporous architecture as a critical design principle for advanced photothermal materials.
尽管光热反应已受到广泛关注,但其表面局部化特性(即热量集中在纳米级表面)导致化学反应活性欠佳。本研究通过对比三维有序大孔碳(OMC)和非大孔固体碳(SC)中光热刚果红(CR)热解情况,建立了一种具有前所未有的光热反应活性的孔内受限热场驱动反应范式。构建了两个模型体系:(1)孔内受限构型:将具有超高CR吸附能力的氟铈纳米域锚定在大孔壁上,以实现CR在OMC中的均匀分布;(2)表面局部化途径:CR混合在SC的外表面,使孔内受限和表面局部化机制解耦。孔内受限体系展现出变革性优势:CR热解近乎完全(>99.00%对39.89%),速率常数提高27.73倍(4.00%/s对0.14%/s),能量效率提高30.71倍。有限元分析表明,由于OMC的低导热性,其内部存在孔内受限热场。该热场以向内增加的温度梯度为特征,通过重构温度分布克服表面局部化限制,形成有效的反应驱动力。这项工作超越了对光热机制的传统理解,并突出了大孔结构作为先进光热材料关键设计原则的地位。