Zhang Xingyu, Huang Gangqin, Ou Yihui, Luo Zeyi, Huang Zheyao, Liu Chenguang, Chen Fen-Er
Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China.
Qingyuan Innovation Laboratory, Quanzhou 362801, P.R. China.
JACS Au. 2025 Aug 9;5(8):4114-4122. doi: 10.1021/jacsau.5c00771. eCollection 2025 Aug 25.
Telescoped multistep flow synthesis, which integrates sequential reactions into a seamless sequence without intermediate isolation, serves as a transformative force propelling the advancement of continuous drug manufacturing. However, interstep incompatibility caused by varying reaction conditions hinders its development and application. To address this critical challenge, we present a hybrid flow system combining micro packed bed reactors (μPBRs) and microtubular reactors (μTRs). μPBRs house heterogeneous catalytic processes, improving solvent and reagent compatibility and operational ease, while μTRs enable intensified homogeneous reactions with enhanced kinetics. This hybrid strategy was applied to the telescoped synthesis of -acyl--alkyl anilineskey pharmacophores in pharmaceuticals and agrichemicalsvia a four-step continuous process: nitro reduction, reductive amination, amide coupling, and ester hydrolysis. High yields of -acyl--alkyl anilines (87% in 15.5 min) and (84% in 13.8 min) were achieved without intermediate isolation. Furthermore, the complete eight-step continuous synthesis of both insecticides, cyproflanilide and broflanilide, was also realized. Notably, this project leveraged dibenzo-18-crown-6 to modulate intrinsic kinetics and tailored flow configurations to intensify apparent kinetics, thus enabling a scalable, biphasic (water/oil) sulfinato-dehalogenation protocol, producing insecticide intermediates at the kilogram-per-day scale. This hybrid strategy demonstrates versatility in addressing reaction incompatibility during telescoped flow synthesis, advancing the practical implementation of continuous manufacturing.
telescoped多步流动合成将连续反应整合为无缝序列,无需中间体分离,是推动连续药物制造发展的变革力量。然而,不同反应条件导致的步间不相容性阻碍了其发展和应用。为应对这一关键挑战,我们提出了一种结合微填充床反应器(μPBR)和微管反应器(μTR)的混合流动系统。μPBR用于多相催化过程,提高溶剂和试剂的兼容性并简化操作,而μTR则可实现强化的均相反应并加快反应动力学。这种混合策略应用于通过四步连续过程 telescoped合成α-酰基-β-烷基苯胺(药物和农用化学品中的关键药效基团):硝基还原、还原胺化、酰胺偶联和酯水解。无需中间体分离即可实现高产率的α-酰基-β-烷基苯胺(15.5分钟内产率87%)和(13.8分钟内产率84%)。此外,还实现了两种杀虫剂环丙氟酰胺和溴氟酰胺的完整八步连续合成。值得注意的是,该项目利用二苯并-18-冠-6调节内在动力学,并定制流动配置以强化表观动力学,从而实现了可扩展的双相(水/油)亚磺酸盐脱卤方案,每天可生产公斤级的杀虫剂中间体。这种混合策略在解决 telescoped流动合成过程中的反应不相容性方面具有通用性,推动了连续制造的实际应用。