Nambiar Anirudh M K, Breen Christopher P, Hart Travis, Kulesza Timothy, Jamison Timothy F, Jensen Klavs F
Department of Chemical Engineering, Massachusetts Institute of Technology,77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
Department of Chemistry, Massachusetts Institute of Technology,77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
ACS Cent Sci. 2022 Jun 22;8(6):825-836. doi: 10.1021/acscentsci.2c00207. Epub 2022 Jun 10.
Computer-aided synthesis planning (CASP) tools can propose retrosynthetic pathways and forward reaction conditions for the synthesis of organic compounds, but the limited availability of context-specific data currently necessitates experimental development to fully specify process details. We plan and optimize a CASP-proposed and human-refined multistep synthesis route toward an exemplary small molecule, sonidegib, on a modular, robotic flow synthesis platform with integrated process analytical technology (PAT) for data-rich experimentation. Human insights address catalyst deactivation and improve yield by strategic choices of order of addition. Multi-objective Bayesian optimization identifies optimal values for categorical and continuous process variables in the multistep route involving 3 reactions (including heterogeneous hydrogenation) and 1 separation. The platform's modularity, robotic reconfigurability, and flexibility for convergent synthesis are shown to be essential for allowing variation of downstream residence time in multistep flow processes and controlling the order of addition to minimize undesired reactivity. Overall, the work demonstrates how automation, machine learning, and robotics enhance manual experimentation through assistance with idea generation, experimental design, execution, and optimization.
计算机辅助合成规划(CASP)工具可以为有机化合物的合成提出逆合成途径和正向反应条件,但目前特定背景数据的可用性有限,因此需要进行实验开发以全面确定工艺细节。我们在一个集成了过程分析技术(PAT)的模块化机器人流动合成平台上,规划并优化了一条由CASP提出并经人工完善的多步合成路线,以合成一个示例性小分子——索尼吉布,用于进行数据丰富的实验。人工智慧通过战略性地选择添加顺序来解决催化剂失活问题并提高产率。多目标贝叶斯优化确定了多步路线中分类和连续过程变量的最佳值,该路线涉及3个反应(包括多相氢化)和1次分离。该平台的模块化、机器人可重新配置性以及收敛合成的灵活性对于在多步流动过程中改变下游停留时间和控制添加顺序以最小化不期望的反应性至关重要。总体而言,这项工作展示了自动化、机器学习和机器人技术如何通过在创意生成、实验设计、执行和优化方面提供协助来增强人工实验。