Zemlianskaia Natalia, Gauderman W James, Lewinger Juan Pablo
Division of Biostatistics, Department of Preventive Medicine, University or Southern California.
J Comput Graph Stat. 2022;31(4):1091-1103. doi: 10.1080/10618600.2022.2039161. Epub 2022 Mar 31.
We describe a regularized regression model for the selection of gene-environment (G×E) interactions. The model focuses on a single environmental exposure and induces a main-effect-before-interaction hierarchical structure. We propose an efficient fitting algorithm and screening rules that can discard large numbers of irrelevant predictors with high accuracy. We present simulation results showing that the model outperforms existing joint selection methods for (G×E) interactions in terms of selection performance, scalability and speed, and provide a real data application. Our implementation is available in the gesso R package.
我们描述了一种用于选择基因-环境(G×E)相互作用的正则化回归模型。该模型聚焦于单一环境暴露,并引入了一种交互作用前主效应的层次结构。我们提出了一种高效的拟合算法和筛选规则,能够高精度地舍弃大量无关预测变量。我们给出的模拟结果表明,该模型在选择性能、可扩展性和速度方面优于现有的用于(G×E)相互作用的联合选择方法,并提供了一个实际数据应用。我们的实现可在gesso R包中获取。