Suppr超能文献

一种用于基因-环境相互作用的可扩展分层套索法。

A scalable hierarchical lasso for gene-environment interactions.

作者信息

Zemlianskaia Natalia, Gauderman W James, Lewinger Juan Pablo

机构信息

Division of Biostatistics, Department of Preventive Medicine, University or Southern California.

出版信息

J Comput Graph Stat. 2022;31(4):1091-1103. doi: 10.1080/10618600.2022.2039161. Epub 2022 Mar 31.

Abstract

We describe a regularized regression model for the selection of gene-environment (G×E) interactions. The model focuses on a single environmental exposure and induces a main-effect-before-interaction hierarchical structure. We propose an efficient fitting algorithm and screening rules that can discard large numbers of irrelevant predictors with high accuracy. We present simulation results showing that the model outperforms existing joint selection methods for (G×E) interactions in terms of selection performance, scalability and speed, and provide a real data application. Our implementation is available in the gesso R package.

摘要

我们描述了一种用于选择基因-环境(G×E)相互作用的正则化回归模型。该模型聚焦于单一环境暴露,并引入了一种交互作用前主效应的层次结构。我们提出了一种高效的拟合算法和筛选规则,能够高精度地舍弃大量无关预测变量。我们给出的模拟结果表明,该模型在选择性能、可扩展性和速度方面优于现有的用于(G×E)相互作用的联合选择方法,并提供了一个实际数据应用。我们的实现可在gesso R包中获取。

相似文献

1
A scalable hierarchical lasso for gene-environment interactions.
J Comput Graph Stat. 2022;31(4):1091-1103. doi: 10.1080/10618600.2022.2039161. Epub 2022 Mar 31.
2
Semiparametric Bayesian variable selection for gene-environment interactions.
Stat Med. 2020 Feb 28;39(5):617-638. doi: 10.1002/sim.8434. Epub 2019 Dec 21.
3
Integrating Multi-Omics Data for Gene-Environment Interactions.
BioTech (Basel). 2021 Jan 29;10(1):3. doi: 10.3390/biotech10010003.
4
Favoring the hierarchical constraint in penalized survival models for randomized trials in precision medicine.
BMC Bioinformatics. 2023 Mar 16;24(1):96. doi: 10.1186/s12859-023-05162-x.
5
A LASSO FOR HIERARCHICAL INTERACTIONS.
Ann Stat. 2013 Jun;41(3):1111-1141. doi: 10.1214/13-AOS1096.
8
9
A Pliable Lasso.
J Comput Graph Stat. 2020;29(1):215-225. doi: 10.1080/10618600.2019.1648271. Epub 2020 Sep 5.

引用本文的文献

1
High-Dimensional Gene-Environment Interaction Analysis.
Annu Rev Stat Appl. 2025 Mar;12. doi: 10.1146/annurev-statistics-112723-034315. Epub 2024 Sep 11.
2
Gaining insights into epigenetic memories through artificial intelligence and omics science in plants.
J Integr Plant Biol. 2025 Sep;67(9):2320-2349. doi: 10.1111/jipb.13953. Epub 2025 Jun 24.
3
Hierarchical selection of genetic and gene by environment interaction effects in high-dimensional mixed models.
Stat Methods Med Res. 2025 Jan;34(1):180-198. doi: 10.1177/09622802241293768. Epub 2024 Dec 10.
4
Gene-environment interactions in human health.
Nat Rev Genet. 2024 Nov;25(11):768-784. doi: 10.1038/s41576-024-00731-z. Epub 2024 May 28.
5
Gene-environment interaction analysis via deep learning.
Genet Epidemiol. 2023 Apr;47(3):261-286. doi: 10.1002/gepi.22518. Epub 2023 Feb 19.

本文引用的文献

1
A fast and scalable framework for large-scale and ultrahigh-dimensional sparse regression with application to the UK Biobank.
PLoS Genet. 2020 Oct 23;16(10):e1009141. doi: 10.1371/journal.pgen.1009141. eCollection 2020 Oct.
2
PEBP1/RKIP behavior: a mirror of actin-membrane organization.
Cell Mol Life Sci. 2020 Mar;77(5):859-874. doi: 10.1007/s00018-020-03455-5. Epub 2020 Jan 20.
4
Structured gene-environment interaction analysis.
Biometrics. 2020 Mar;76(1):23-35. doi: 10.1111/biom.13139. Epub 2019 Oct 9.
5
Dissecting gene-environment interactions: A penalized robust approach accounting for hierarchical structures.
Stat Med. 2018 Feb 10;37(3):437-456. doi: 10.1002/sim.7518. Epub 2017 Oct 16.
6
Convex Modeling of Interactions with Strong Heredity.
J Comput Graph Stat. 2016;25(4):981-1004. doi: 10.1080/10618600.2015.1067217. Epub 2015 Aug 12.
8
Learning interactions via hierarchical group-lasso regularization.
J Comput Graph Stat. 2015;24(3):627-654. doi: 10.1080/10618600.2014.938812. Epub 2015 Sep 16.
9
A LASSO FOR HIERARCHICAL INTERACTIONS.
Ann Stat. 2013 Jun;41(3):1111-1141. doi: 10.1214/13-AOS1096.
10
Genome-wide diet-gene interaction analyses for risk of colorectal cancer.
PLoS Genet. 2014 Apr 17;10(4):e1004228. doi: 10.1371/journal.pgen.1004228. eCollection 2014 Apr.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验