Suppr超能文献

BIDpred:利用统计特征发现和深度学习预测揭示B细胞免疫优势层次模式。

BIDpred: unraveling B cell Immunodominance hierarchical pattern using statistical feature discovery and deep learning prediction.

作者信息

Choi Sungjin, Kim Dongsup

机构信息

Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.

出版信息

Front Immunol. 2025 Aug 13;16:1646946. doi: 10.3389/fimmu.2025.1646946. eCollection 2025.

Abstract

Knowledge of B cell immunodominance is important for designing vaccines that may elicit effective immune responses. However, the prevalence and characteristics of B cell immunodominance remain poorly understood. In this study, we introduced an immunodominance score through novel data processing methods and identified statistically significant characteristics of B cell immunodominance at the residue and patch levels. Based on these findings, we developed BIDpred, a B cell ImmunoDominance predictor, that learns newly discovered features by leveraging protein language model embeddings and graph attention network to predict the immunodominance scores. BIDpred demonstrates superior performance in predicting immunodominance scores compared to existing methods while maintaining competitive accuracy with state-of-the-art methods for conventional B cell epitope prediction. To the best of our knowledge, this is the first study to systematically analyze and predict B cell immunodominance patterns, marking a significant advancement in vaccine design research.

摘要

了解B细胞免疫显性对于设计可能引发有效免疫反应的疫苗至关重要。然而,B细胞免疫显性的流行情况和特征仍知之甚少。在本研究中,我们通过新颖的数据处理方法引入了免疫显性评分,并在残基和片段水平上确定了B细胞免疫显性的统计学显著特征。基于这些发现,我们开发了BIDpred,一种B细胞免疫显性预测器,它通过利用蛋白质语言模型嵌入和图注意力网络来学习新发现的特征,以预测免疫显性评分。与现有方法相比,BIDpred在预测免疫显性评分方面表现出卓越性能,同时在传统B细胞表位预测方面与最先进的方法保持着有竞争力的准确性。据我们所知,这是第一项系统分析和预测B细胞免疫显性模式的研究,标志着疫苗设计研究取得了重大进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5ba4/12380532/e67a64200929/fimmu-16-1646946-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验