Suppr超能文献

CardioFit:一种基于WebGL的工具,用于对心脏动作电位模型进行快速有效的参数化,以拟合用户提供的数据。

CardioFit: a WebGL-based tool for fast and efficient parametrization of cardiac action potential models to fit user-provided data.

作者信息

Cairns Darby I, Comstock Maxfield Roth, Fenton Flavio H, Cherry Elizabeth M

机构信息

School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA.

Department of Physics, Georgia Institute of Technology, Atlanta, GA, USA.

出版信息

R Soc Open Sci. 2025 Aug 27;12(8):250048. doi: 10.1098/rsos.250048. eCollection 2025 Aug.

Abstract

Cardiac action potential models allow examination of a variety of cardiac dynamics, including how behaviour may change under specific interventions. To study a specific scenario, including patient-specific cases, model parameter sets must be found that accurately reproduce the dynamics of interest. To facilitate this complex and time-consuming process, we present CardioFit, an interactive browser-based tool that uses the particle swarm optimization (PSO) algorithm implemented in JavaScript and takes advantage of the WebGL API for hardware acceleration. Our tool allows rapid customization and can find low-error fittings to user-provided voltage time series or action potential duration data from multiple cycle lengths in a few iterations (10-32), corresponding to a runtime of a few seconds on most machines. Additionally, our tool focuses on ease of use and flexibility, providing a webpage interface that allows users to select a subset of parameters to fit, set the range of values each parameter is allowed to assume, and control the PSO algorithm hyperparameters. We demonstrate our tool's utility by fitting a variety of models to different datasets, showing how convergence is affected by model choice, dataset properties and PSO algorithmic settings, and explaining new insights gained about the physiological and dynamical roles of the model parameters.

摘要

心脏动作电位模型能够用于研究各种心脏动力学,包括在特定干预下行为可能如何变化。为了研究特定场景,包括特定患者的情况,必须找到能够准确再现感兴趣动力学的模型参数集。为了便于这个复杂且耗时的过程,我们展示了CardioFit,这是一个基于浏览器的交互式工具,它使用JavaScript实现的粒子群优化(PSO)算法,并利用WebGL API进行硬件加速。我们的工具允许快速定制,并且能够在几次迭代(10 - 32次)中找到与用户提供的来自多个心动周期长度的电压时间序列或动作电位持续时间数据的低误差拟合,这在大多数机器上对应几秒的运行时间。此外,我们的工具注重易用性和灵活性,提供了一个网页界面,允许用户选择要拟合的参数子集,设置每个参数允许假设的值范围,并控制PSO算法的超参数。我们通过将各种模型拟合到不同数据集来展示我们工具的实用性,展示了收敛如何受到模型选择、数据集属性和PSO算法设置的影响,并解释了关于模型参数的生理和动力学作用所获得的新见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e057/12381663/d8039292598f/rsos.250048.f004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验