文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于计算机断层扫描图像的深度学习放射组学模型用于预测骨质疏松性椎体骨折的分类:算法开发与验证

Deep Learning Radiomics Model Based on Computed Tomography Image for Predicting the Classification of Osteoporotic Vertebral Fractures: Algorithm Development and Validation.

作者信息

Liu Jiayi, Zhang Lincen, Yuan Yousheng, Tang Jun, Liu Yongkang, Xia Liang, Zhang Jun

机构信息

Department of Radiology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Road, Nanjing, 211100, China, 86 18851667275.

Department of Radiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China.

出版信息

JMIR Med Inform. 2025 Aug 29;13:e75665. doi: 10.2196/75665.


DOI:10.2196/75665
PMID:40882615
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12396830/
Abstract

BACKGROUND: Osteoporotic vertebral fractures (OVFs) are common in older adults and often lead to disability if not properly diagnosed and classified. With the increased use of computed tomography (CT) imaging and the development of radiomics and deep learning technologies, there is potential to improve the classification accuracy of OVFs. OBJECTIVE: This study aims to evaluate the efficacy of a deep learning radiomics model, derived from CT imaging, in accurately classifying OVFs. METHODS: The study analyzed 981 patients (aged 50-95 years; 687 women, 294 men), involving 1098 vertebrae, from 3 medical centers who underwent both CT and magnetic resonance imaging examinations. The Assessment System of Thoracolumbar Osteoporotic Fractures (ASTLOF) classified OVFs into Classes 0, 1, and 2. The data were categorized into 4 cohorts: training (n=750), internal validation (n=187), external validation (n=110), and prospective validation (n=51). Deep transfer learning used the ResNet-50 architecture, pretrained on RadImageNet and ImageNet, to extract imaging features. Deep transfer learning-based features were combined with radiomics features and refined using Least Absolute Shrinkage and Selection Operator (LASSO) regression. The performance of 8 machine learning classifiers for OVF classification was assessed using receiver operating characteristic metrics and the "One-vs-Rest" approach. Performance comparisons between RadImageNet- and ImageNet-based models were performed using the DeLong test. Shapley Additive Explanations (SHAP) analysis was used to interpret feature importance and the predictive rationale of the optimal fusion model. RESULTS: Feature selection and fusion yielded 33 and 54 fused features for the RadImageNet- and ImageNet-based models, respectively, following pretraining on the training set. The best-performing machine learning algorithms for these 2 deep learning radiomics models were the multilayer perceptron and Light Gradient Boosting Machine (LightGBM). The macro-average area under the curve (AUC) values for the fused models based on RadImageNet and ImageNet were 0.934 and 0.996, respectively, with DeLong test showing no statistically significant difference (P=2.34). The RadImageNet-based model significantly surpassed the ImageNet-based model across internal, external, and prospective validation sets, with macro-average AUCs of 0.837 versus 0.648, 0.773 versus 0.633, and 0.852 versus 0.648, respectively (P<.05). Using the binary "One-vs-Rest" approach, the RadImageNet-based fused model achieved superior predictive performance for Class 2 (AUC=0.907, 95% CI 0.805-0.999), with Classes 0 and 1 following (AUC/accuracy=0.829/0.803 and 0.794/0.768, respectively). SHAP analysis provided a visualization of feature importance in the RadImageNet-based fused model, highlighting the top 3 most influential features: cluster shade, mean, and large area low gray level emphasis, and their respective impacts on predictions. CONCLUSIONS: The RadImageNet-based fused model using CT imaging data exhibited superior predictive performance compared to the ImageNet-based model, demonstrating significant utility in OVF classification and aiding clinical decision-making for treatment planning. Among the 3 classes, the model performed best in identifying Class 2, followed by Class 0 and Class 1.

摘要

背景:骨质疏松性椎体骨折(OVF)在老年人中很常见,如果未得到正确诊断和分类,往往会导致残疾。随着计算机断层扫描(CT)成像的使用增加以及放射组学和深度学习技术的发展,提高OVF分类准确性具有潜力。 目的:本研究旨在评估基于CT成像的深度学习放射组学模型在准确分类OVF方面的疗效。 方法:该研究分析了来自3个医疗中心的981例患者(年龄50 - 95岁;女性687例,男性294例),涉及1098个椎体,这些患者均接受了CT和磁共振成像检查。胸腰椎骨质疏松性骨折评估系统(ASTLOF)将OVF分为0级、1级和2级。数据被分为4个队列:训练集(n = 750)、内部验证集(n = 187)、外部验证集(n = 110)和前瞻性验证集(n = 51)。深度迁移学习使用在RadImageNet和ImageNet上预训练的ResNet - 50架构来提取影像特征。基于深度迁移学习的特征与放射组学特征相结合,并使用最小绝对收缩和选择算子(LASSO)回归进行优化。使用受试者工作特征指标和“一对其余”方法评估8种机器学习分类器对OVF分类的性能。使用DeLong检验对基于RadImageNet和基于ImageNet的模型进行性能比较。使用Shapley加性解释(SHAP)分析来解释特征重要性和最佳融合模型的预测原理。 结果:在训练集上进行预训练后,基于RadImageNet和基于ImageNet的模型分别通过特征选择和融合得到了33个和54个融合特征。这两种深度学习放射组学模型表现最佳的机器学习算法分别是多层感知器和轻量级梯度提升机(LightGBM)。基于RadImageNet和基于ImageNet的融合模型的曲线下面积(AUC)宏平均值得分分别为0.934和0.996,DeLong检验显示无统计学显著差异(P = 2.34)。在内部、外部和前瞻性验证集中,基于RadImageNet的模型显著优于基于ImageNet的模型,其AUC宏平均值分别为0.837对0.648、0.773对0.633以及0.852对0.648(P <.05)。使用二元“一对其余”方法,基于RadImageNet的融合模型在2级分类中表现出卓越的预测性能(AUC = 0.907,95% CI 0.805 - 0.999),其次是0级和1级(AUC/准确率分别为0.829/0.803和0.794/0.768)。SHAP分析可视化了基于RadImageNet的融合模型中的特征重要性,突出了最具影响力的前3个特征:聚类阴影、均值和大面积低灰度级强调,以及它们各自对预测的影响。 结论:与基于ImageNet的模型相比,使用CT成像数据的基于RadImageNet的融合模型表现出卓越的预测性能,在OVF分类中显示出显著效用,并有助于治疗计划的临床决策。在这3个级别中,该模型在识别2级方面表现最佳,其次是0级和1级。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/099a/12396830/be159ba04df0/medinform-v13-e75665-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/099a/12396830/bf3221d57168/medinform-v13-e75665-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/099a/12396830/fbf2c56cff14/medinform-v13-e75665-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/099a/12396830/f2ae7e593e9a/medinform-v13-e75665-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/099a/12396830/ee1642367610/medinform-v13-e75665-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/099a/12396830/b8ed27071931/medinform-v13-e75665-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/099a/12396830/3c368004e9ad/medinform-v13-e75665-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/099a/12396830/be159ba04df0/medinform-v13-e75665-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/099a/12396830/bf3221d57168/medinform-v13-e75665-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/099a/12396830/fbf2c56cff14/medinform-v13-e75665-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/099a/12396830/f2ae7e593e9a/medinform-v13-e75665-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/099a/12396830/ee1642367610/medinform-v13-e75665-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/099a/12396830/b8ed27071931/medinform-v13-e75665-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/099a/12396830/3c368004e9ad/medinform-v13-e75665-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/099a/12396830/be159ba04df0/medinform-v13-e75665-g007.jpg

相似文献

[1]
Deep Learning Radiomics Model Based on Computed Tomography Image for Predicting the Classification of Osteoporotic Vertebral Fractures: Algorithm Development and Validation.

JMIR Med Inform. 2025-8-29

[2]
Constructing a Deep Learning Radiomics Model Based on X-ray Images and Clinical Data for Predicting and Distinguishing Acute and Chronic Osteoporotic Vertebral Fractures: A Multicenter Study.

Acad Radiol. 2024-5

[3]
Exploring deep learning radiomics for classifying osteoporotic vertebral fractures in X-ray images.

Front Endocrinol (Lausanne). 2024

[4]
[Preoperative discrimination of colorectal mucinous adenocarcinoma using enhanced CT-based radiomics and deep learning fusion model].

Zhonghua Wai Ke Za Zhi. 2025-8-20

[5]
Interpretable Machine Learning Models for Differentiating Glioblastoma From Solitary Brain Metastasis Using Radiomics.

Acad Radiol. 2025-5-27

[6]
Deep transfer learning radiomics combined with explainable machine learning for preoperative thymoma risk prediction based on CT.

Eur J Radiol. 2025-9

[7]
Prediction of EGFR Mutations in Lung Adenocarcinoma via CT Images: A Comparative Study of Intratumoral and Peritumoral Radiomics, Deep Learning, and Fusion Models.

Acad Radiol. 2025-5-5

[8]
A Multimodal MRI-Based Model for Colorectal Liver Metastasis Prediction: Integrating Radiomics, Deep Learning, and Clinical Features with SHAP Interpretation.

Curr Oncol. 2025-7-30

[9]
Integrating Clinical Data and Radiomics and Deep Learning Features for End-to-End Delayed Cerebral Ischemia Prediction on Noncontrast CT.

AJNR Am J Neuroradiol. 2024-9-9

[10]
Supervised Machine Learning Models for Predicting Sepsis-Associated Liver Injury in Patients With Sepsis: Development and Validation Study Based on a Multicenter Cohort Study.

J Med Internet Res. 2025-5-26

本文引用的文献

[1]
Detection and Analysis of Circadian Biomarkers for Metabolic Syndrome Using Wearable Data: Cross-Sectional Study.

JMIR Med Inform. 2025-7-16

[2]
Deep learning models for differentiating three sinonasal malignancies using multi-sequence MRI.

BMC Med Imaging. 2025-2-21

[3]
Development and Validation of a Prediction Model Using Sella Magnetic Resonance Imaging-Based Radiomics and Clinical Parameters for the Diagnosis of Growth Hormone Deficiency and Idiopathic Short Stature: Cross-Sectional, Multicenter Study.

J Med Internet Res. 2024-11-27

[4]
Polynomial-SHAP analysis of liver disease markers for capturing of complex feature interactions in machine learning models.

Comput Biol Med. 2024-11

[5]
Combining Clinical-Radiomics Features With Machine Learning Methods for Building Models to Predict Postoperative Recurrence in Patients With Chronic Subdural Hematoma: Retrospective Cohort Study.

J Med Internet Res. 2024-8-28

[6]
RadImageNet and ImageNet as Datasets for Transfer Learning in the Assessment of Dental Radiographs: A Comparative Study.

J Imaging Inform Med. 2025-2

[7]
Development and validation of a predictive model for vertebral fracture risk in osteoporosis patients.

Eur Spine J. 2024-8

[8]
Exploring deep learning radiomics for classifying osteoporotic vertebral fractures in X-ray images.

Front Endocrinol (Lausanne). 2024

[9]
New Insights in the Pathophysiology, Epidemiology, and Response to Treatment of Osteoporotic Vertebral Fractures.

J Clin Endocrinol Metab. 2023-10-18

[10]
Interstitial lung disease diagnosis and prognosis using an AI system integrating longitudinal data.

Nat Commun. 2023-4-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索