Liu Jiayi, Zhang Lincen, Yuan Yousheng, Tang Jun, Liu Yongkang, Xia Liang, Zhang Jun
Department of Radiology, Sir Run Run Hospital, Nanjing Medical University, 109 Longmian Road, Nanjing, 211100, China, 86 18851667275.
Department of Radiology, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China.
JMIR Med Inform. 2025 Aug 29;13:e75665. doi: 10.2196/75665.
BACKGROUND: Osteoporotic vertebral fractures (OVFs) are common in older adults and often lead to disability if not properly diagnosed and classified. With the increased use of computed tomography (CT) imaging and the development of radiomics and deep learning technologies, there is potential to improve the classification accuracy of OVFs. OBJECTIVE: This study aims to evaluate the efficacy of a deep learning radiomics model, derived from CT imaging, in accurately classifying OVFs. METHODS: The study analyzed 981 patients (aged 50-95 years; 687 women, 294 men), involving 1098 vertebrae, from 3 medical centers who underwent both CT and magnetic resonance imaging examinations. The Assessment System of Thoracolumbar Osteoporotic Fractures (ASTLOF) classified OVFs into Classes 0, 1, and 2. The data were categorized into 4 cohorts: training (n=750), internal validation (n=187), external validation (n=110), and prospective validation (n=51). Deep transfer learning used the ResNet-50 architecture, pretrained on RadImageNet and ImageNet, to extract imaging features. Deep transfer learning-based features were combined with radiomics features and refined using Least Absolute Shrinkage and Selection Operator (LASSO) regression. The performance of 8 machine learning classifiers for OVF classification was assessed using receiver operating characteristic metrics and the "One-vs-Rest" approach. Performance comparisons between RadImageNet- and ImageNet-based models were performed using the DeLong test. Shapley Additive Explanations (SHAP) analysis was used to interpret feature importance and the predictive rationale of the optimal fusion model. RESULTS: Feature selection and fusion yielded 33 and 54 fused features for the RadImageNet- and ImageNet-based models, respectively, following pretraining on the training set. The best-performing machine learning algorithms for these 2 deep learning radiomics models were the multilayer perceptron and Light Gradient Boosting Machine (LightGBM). The macro-average area under the curve (AUC) values for the fused models based on RadImageNet and ImageNet were 0.934 and 0.996, respectively, with DeLong test showing no statistically significant difference (P=2.34). The RadImageNet-based model significantly surpassed the ImageNet-based model across internal, external, and prospective validation sets, with macro-average AUCs of 0.837 versus 0.648, 0.773 versus 0.633, and 0.852 versus 0.648, respectively (P<.05). Using the binary "One-vs-Rest" approach, the RadImageNet-based fused model achieved superior predictive performance for Class 2 (AUC=0.907, 95% CI 0.805-0.999), with Classes 0 and 1 following (AUC/accuracy=0.829/0.803 and 0.794/0.768, respectively). SHAP analysis provided a visualization of feature importance in the RadImageNet-based fused model, highlighting the top 3 most influential features: cluster shade, mean, and large area low gray level emphasis, and their respective impacts on predictions. CONCLUSIONS: The RadImageNet-based fused model using CT imaging data exhibited superior predictive performance compared to the ImageNet-based model, demonstrating significant utility in OVF classification and aiding clinical decision-making for treatment planning. Among the 3 classes, the model performed best in identifying Class 2, followed by Class 0 and Class 1.
背景:骨质疏松性椎体骨折(OVF)在老年人中很常见,如果未得到正确诊断和分类,往往会导致残疾。随着计算机断层扫描(CT)成像的使用增加以及放射组学和深度学习技术的发展,提高OVF分类准确性具有潜力。 目的:本研究旨在评估基于CT成像的深度学习放射组学模型在准确分类OVF方面的疗效。 方法:该研究分析了来自3个医疗中心的981例患者(年龄50 - 95岁;女性687例,男性294例),涉及1098个椎体,这些患者均接受了CT和磁共振成像检查。胸腰椎骨质疏松性骨折评估系统(ASTLOF)将OVF分为0级、1级和2级。数据被分为4个队列:训练集(n = 750)、内部验证集(n = 187)、外部验证集(n = 110)和前瞻性验证集(n = 51)。深度迁移学习使用在RadImageNet和ImageNet上预训练的ResNet - 50架构来提取影像特征。基于深度迁移学习的特征与放射组学特征相结合,并使用最小绝对收缩和选择算子(LASSO)回归进行优化。使用受试者工作特征指标和“一对其余”方法评估8种机器学习分类器对OVF分类的性能。使用DeLong检验对基于RadImageNet和基于ImageNet的模型进行性能比较。使用Shapley加性解释(SHAP)分析来解释特征重要性和最佳融合模型的预测原理。 结果:在训练集上进行预训练后,基于RadImageNet和基于ImageNet的模型分别通过特征选择和融合得到了33个和54个融合特征。这两种深度学习放射组学模型表现最佳的机器学习算法分别是多层感知器和轻量级梯度提升机(LightGBM)。基于RadImageNet和基于ImageNet的融合模型的曲线下面积(AUC)宏平均值得分分别为0.934和0.996,DeLong检验显示无统计学显著差异(P = 2.34)。在内部、外部和前瞻性验证集中,基于RadImageNet的模型显著优于基于ImageNet的模型,其AUC宏平均值分别为0.837对0.648、0.773对0.633以及0.852对0.648(P <.05)。使用二元“一对其余”方法,基于RadImageNet的融合模型在2级分类中表现出卓越的预测性能(AUC = 0.907,95% CI 0.805 - 0.999),其次是0级和1级(AUC/准确率分别为0.829/0.803和0.794/0.768)。SHAP分析可视化了基于RadImageNet的融合模型中的特征重要性,突出了最具影响力的前3个特征:聚类阴影、均值和大面积低灰度级强调,以及它们各自对预测的影响。 结论:与基于ImageNet的模型相比,使用CT成像数据的基于RadImageNet的融合模型表现出卓越的预测性能,在OVF分类中显示出显著效用,并有助于治疗计划的临床决策。在这3个级别中,该模型在识别2级方面表现最佳,其次是0级和1级。
Front Endocrinol (Lausanne). 2024
BMC Med Imaging. 2025-2-21
Front Endocrinol (Lausanne). 2024
J Clin Endocrinol Metab. 2023-10-18