Department of Radiology, Shanghai Tenth People's Hospital, Clinical Medical College of Nanjing Medical University, Shanghai, China.
Department of Radiology, Sir RunRun Hospital, Nanjing Medical University, Nanjing, China.
Front Endocrinol (Lausanne). 2024 Mar 28;15:1370838. doi: 10.3389/fendo.2024.1370838. eCollection 2024.
To develop and validate a deep learning radiomics (DLR) model that uses X-ray images to predict the classification of osteoporotic vertebral fractures (OVFs).
The study encompassed a cohort of 942 patients, involving examinations of 1076 vertebrae through X-ray, CT, and MRI across three distinct hospitals. The OVFs were categorized as class 0, 1, or 2 based on the Assessment System of Thoracolumbar Osteoporotic Fracture. The dataset was divided randomly into four distinct subsets: a training set comprising 712 samples, an internal validation set with 178 samples, an external validation set containing 111 samples, and a prospective validation set consisting of 75 samples. The ResNet-50 architectural model was used to implement deep transfer learning (DTL), undergoing -pre-training separately on the RadImageNet and ImageNet datasets. Features from DTL and radiomics were extracted and integrated using X-ray images. The optimal fusion feature model was identified through least absolute shrinkage and selection operator logistic regression. Evaluation of the predictive capabilities for OVFs classification involved eight machine learning models, assessed through receiver operating characteristic curves employing the "One-vs-Rest" strategy. The Delong test was applied to compare the predictive performance of the superior RadImageNet model against the ImageNet model.
Following pre-training separately on RadImageNet and ImageNet datasets, feature selection and fusion yielded 17 and 12 fusion features, respectively. Logistic regression emerged as the optimal machine learning algorithm for both DLR models. Across the training set, internal validation set, external validation set, and prospective validation set, the macro-average Area Under the Curve (AUC) based on the RadImageNet dataset surpassed those based on the ImageNet dataset, with statistically significant differences observed (P<0.05). Utilizing the binary "One-vs-Rest" strategy, the model based on the RadImageNet dataset demonstrated superior efficacy in predicting Class 0, achieving an AUC of 0.969 and accuracy of 0.863. Predicting Class 1 yielded an AUC of 0.945 and accuracy of 0.875, while for Class 2, the AUC and accuracy were 0.809 and 0.692, respectively.
The DLR model, based on the RadImageNet dataset, outperformed the ImageNet model in predicting the classification of OVFs, with generalizability confirmed in the prospective validation set.
开发并验证一种基于深度学习的放射组学(DLR)模型,该模型使用 X 射线图像预测骨质疏松性椎体骨折(OVF)的分类。
该研究纳入了 942 例患者,涉及来自 3 家不同医院的 1076 个椎体的 X 射线、CT 和 MRI 检查。根据胸腰椎骨质疏松性骨折评估系统,OVF 被分为 0 类、1 类或 2 类。数据集随机分为四个不同子集:一个包含 712 个样本的训练集、一个包含 178 个样本的内部验证集、一个包含 111 个样本的外部验证集和一个包含 75 个样本的前瞻性验证集。使用 ResNet-50 架构模型实现深度迁移学习(DTL),分别在 RadImageNet 和 ImageNet 数据集上进行预训练。从 DTL 和放射组学中提取特征,并使用 X 射线图像进行集成。通过最小绝对值收缩和选择算子逻辑回归来确定最佳融合特征模型。通过采用“一对一”策略的接收器工作特征曲线评估了 8 种机器学习模型对 OVF 分类的预测能力。采用 Delong 检验比较了优越的基于 RadImageNet 的模型与基于 ImageNet 的模型的预测性能。
在分别在 RadImageNet 和 ImageNet 数据集上进行预训练后,特征选择和融合分别得到 17 个和 12 个融合特征。逻辑回归是两种 DLR 模型的最优机器学习算法。在训练集、内部验证集、外部验证集和前瞻性验证集中,基于 RadImageNet 数据集的宏观平均 AUC 均优于基于 ImageNet 数据集的 AUC,差异具有统计学意义(P<0.05)。使用二进制“一对一”策略,基于 RadImageNet 数据集的模型在预测 Class 0 方面表现出较好的效果,AUC 为 0.969,准确率为 0.863。预测 Class 1 的 AUC 为 0.945,准确率为 0.875,而对于 Class 2,AUC 和准确率分别为 0.809 和 0.692。
基于 RadImageNet 数据集的 DLR 模型在预测 OVF 分类方面优于基于 ImageNet 的模型,在前瞻性验证集中得到了验证。