Mannes Guesser De Oliveira Sophia, Rezwan Kurosch, Verseux Cyprien, Maas Michael
Advanced Ceramics, University of Bremen, Bremen, Germany.
MAPEX, Centre of Materials and Processes, University of Bremen, Bremen, Germany.
NPJ Microgravity. 2025 Aug 29;11(1):60. doi: 10.1038/s41526-025-00521-9.
The long-term goal of establishing a sustained human presence on Mars requires the capacity to produce essential consumables on-site. To this end, we develop strategies for processing inorganic oxidic powders and biomass into highly particle-filled composites using direct ink writing (DIW) 3D printing. Our approach relies on a simulant of a Martian regolith unit rich in hydrated clay minerals and food-grade spirulina, used as proxies for local regolith and cyanobacterial biomass, respectively. The composites are further reinforced through crosslinking with the plant-based molecule genipin. Detailed rheological analysis was performed for the 3D printing feedstocks, while the printed composites were characterized using thermal gravimetric analysis (TGA), surface area porosity analysis (BET), microscopy and mechanical tests. Dissolution tests demonstrated that genipin effectively crosslinks the cyanobacterial biomass. The outcome is a highly porous, lightweight material with adaptable, complex morphology, which has significant potential for use in the resource-constrained environments of long-duration Mars missions.
在火星上建立持续的人类存在的长期目标需要具备在现场生产基本消耗品的能力。为此,我们开发了一些策略,利用直接墨水书写(DIW)3D打印技术将无机氧化物粉末和生物质加工成高颗粒填充复合材料。我们的方法依赖于一种富含水合粘土矿物的火星风化层单元模拟物和食品级螺旋藻,它们分别用作当地风化层和蓝藻生物质的替代物。通过与植物基分子京尼平交联,进一步增强了复合材料的性能。对3D打印原料进行了详细的流变学分析,同时使用热重分析(TGA)、表面积孔隙率分析(BET)、显微镜检查和力学测试对打印的复合材料进行了表征。溶解试验表明,京尼平有效地交联了蓝藻生物质。结果是一种具有高度多孔性、轻质、形态可适应且复杂的材料,在长期火星任务的资源受限环境中具有巨大的应用潜力。