Zeng Youze, Wang Xue, Qi Wei, Liu Changpeng, Lu Lanlu, Xiao Meiling, Li Kai, Xiao Fei, Shao Minhua, Xing Wei, Zhu Jianbing
State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.
School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China.
Nat Commun. 2025 Aug 29;16(1):8111. doi: 10.1038/s41467-025-63322-4.
The inherent scaling relationships between adsorption energies of oxygen-containing intermediates impose an intrinsic limitation on the maximum oxygen reduction reaction (ORR) activity, which represents one of the bottlenecks for the practical application of anion exchange membrane fuel cells (AEMFCs). To address this challenge, we align the 3dz orbital energy levels of Fe and Co to selectively customize the dissociative ORR pathway without the formation of OOH* intermediates, circumventing the conventional OH*-OOH* scaling relations. This rational design is achieved by atomic phosphorus(P) substitution, which not only optimizes orbital matching towards O-O cis-bridge adsorption, but also stabilizes the spontaneously adsorbed OH ligand as an electronic modifier. Due to these attributes, the well-designed FeCo-N/P-C catalyst demonstrates ORR performance with a current density of 251 mA·cm at 0.9 V under 1.5 bar H-O, showing a competitive performance with state-of-the-art Pt-free electrocatalysts and meeting the 2025 DOE target (44 mA·cm). More importantly, the peak power density reaches as high as 0.805 W·cm under 1.5 bar H-air with negligible degradation observed over 10,000 cycles of voltage accelerated stress testing. This work offers a highly competitive electrocatalyst for AEMFCs and opens an effective avenue to bypass the constraints of linear scaling relations for ORR and beyond.
含氧中间体吸附能之间固有的标度关系对最大氧还原反应(ORR)活性构成了内在限制,这是阴离子交换膜燃料电池(AEMFCs)实际应用的瓶颈之一。为应对这一挑战,我们通过调整铁和钴的3dz轨道能级,选择性地定制解离性ORR途径,避免形成OOH中间体,从而规避了传统的OH-OOH*标度关系。这种合理设计是通过原子磷(P)取代实现的,它不仅优化了对O-O顺式桥吸附的轨道匹配,还作为电子修饰剂稳定了自发吸附的OH配体。由于这些特性,精心设计的FeCo-N/P-C催化剂在1.5 bar H-O条件下,于0.9 V时展现出251 mA·cm的电流密度的ORR性能,与最先进的无铂电催化剂相比具有竞争力,并达到了2025年美国能源部的目标(44 mA·cm)。更重要的是,在1.5 bar H-空气条件下,峰值功率密度高达0.805 W·cm,在10000次电压加速应力测试中观察到的降解可忽略不计循环。这项工作为AEMFCs提供了一种极具竞争力的电催化剂,并开辟了一条有效途径,以绕过ORR及其他反应的线性标度关系的限制。
Angew Chem Int Ed Engl. 2025-9-4
J Colloid Interface Sci. 2025-12
J Phys Chem B. 2004-11-18
J Am Chem Soc. 2023-2-15