文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于阴离子交换膜燃料电池中氧还原反应的双原子位点催化剂的对齐d轨道能级

Aligned d-orbital energy level of dual-atom sites catalysts for oxygen reduction reaction in anion exchange membrane fuel cells.

作者信息

Zeng Youze, Wang Xue, Qi Wei, Liu Changpeng, Lu Lanlu, Xiao Meiling, Li Kai, Xiao Fei, Shao Minhua, Xing Wei, Zhu Jianbing

机构信息

State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China.

School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, China.

出版信息

Nat Commun. 2025 Aug 29;16(1):8111. doi: 10.1038/s41467-025-63322-4.


DOI:10.1038/s41467-025-63322-4
PMID:40883310
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12397255/
Abstract

The inherent scaling relationships between adsorption energies of oxygen-containing intermediates impose an intrinsic limitation on the maximum oxygen reduction reaction (ORR) activity, which represents one of the bottlenecks for the practical application of anion exchange membrane fuel cells (AEMFCs). To address this challenge, we align the 3dz orbital energy levels of Fe and Co to selectively customize the dissociative ORR pathway without the formation of OOH* intermediates, circumventing the conventional OH*-OOH* scaling relations. This rational design is achieved by atomic phosphorus(P) substitution, which not only optimizes orbital matching towards O-O cis-bridge adsorption, but also stabilizes the spontaneously adsorbed OH ligand as an electronic modifier. Due to these attributes, the well-designed FeCo-N/P-C catalyst demonstrates ORR performance with a current density of 251 mA·cm at 0.9 V under 1.5 bar H-O, showing a competitive performance with state-of-the-art Pt-free electrocatalysts and meeting the 2025 DOE target (44 mA·cm). More importantly, the peak power density reaches as high as 0.805 W·cm under 1.5 bar H-air with negligible degradation observed over 10,000 cycles of voltage accelerated stress testing. This work offers a highly competitive electrocatalyst for AEMFCs and opens an effective avenue to bypass the constraints of linear scaling relations for ORR and beyond.

摘要

含氧中间体吸附能之间固有的标度关系对最大氧还原反应(ORR)活性构成了内在限制,这是阴离子交换膜燃料电池(AEMFCs)实际应用的瓶颈之一。为应对这一挑战,我们通过调整铁和钴的3dz轨道能级,选择性地定制解离性ORR途径,避免形成OOH中间体,从而规避了传统的OH-OOH*标度关系。这种合理设计是通过原子磷(P)取代实现的,它不仅优化了对O-O顺式桥吸附的轨道匹配,还作为电子修饰剂稳定了自发吸附的OH配体。由于这些特性,精心设计的FeCo-N/P-C催化剂在1.5 bar H-O条件下,于0.9 V时展现出251 mA·cm的电流密度的ORR性能,与最先进的无铂电催化剂相比具有竞争力,并达到了2025年美国能源部的目标(44 mA·cm)。更重要的是,在1.5 bar H-空气条件下,峰值功率密度高达0.805 W·cm,在10000次电压加速应力测试中观察到的降解可忽略不计循环。这项工作为AEMFCs提供了一种极具竞争力的电催化剂,并开辟了一条有效途径,以绕过ORR及其他反应的线性标度关系的限制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e57e/12397255/81ad28655a08/41467_2025_63322_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e57e/12397255/1853c561379c/41467_2025_63322_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e57e/12397255/ef4559e357d0/41467_2025_63322_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e57e/12397255/43139dd4ec69/41467_2025_63322_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e57e/12397255/61514419f9e1/41467_2025_63322_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e57e/12397255/9e178c9b73e2/41467_2025_63322_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e57e/12397255/81ad28655a08/41467_2025_63322_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e57e/12397255/1853c561379c/41467_2025_63322_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e57e/12397255/ef4559e357d0/41467_2025_63322_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e57e/12397255/43139dd4ec69/41467_2025_63322_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e57e/12397255/61514419f9e1/41467_2025_63322_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e57e/12397255/9e178c9b73e2/41467_2025_63322_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e57e/12397255/81ad28655a08/41467_2025_63322_Fig6_HTML.jpg

相似文献

[1]
Aligned d-orbital energy level of dual-atom sites catalysts for oxygen reduction reaction in anion exchange membrane fuel cells.

Nat Commun. 2025-8-29

[2]
Dynamic Fe─F Coordination Triggered Structure-Adaptive Fe-N-C for Efficient Oxygen Reduction Electrocatalysis.

Angew Chem Int Ed Engl. 2025-9-4

[3]
A Universal Metal Ion-Targeting Coordination Strategy for Precise Synthesis of Heteronuclear Dual-Atom Electrocatalysts for Oxygen Reduction.

Angew Chem Int Ed Engl. 2025-8-11

[4]
The selective 3e ORR pathway induced by differential polarization of surface -OH by adjacent heterodinuclear metals realizes the directed conversion of radicals.

J Environ Manage. 2025-6-24

[5]
Concurrently Boosting Activity and Stability of Oxygen Reduction Reaction Catalysts via Judiciously Crafting Fe-Mn Dual Atoms for Fuel Cells.

Nanomicro Lett. 2024-12-16

[6]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[7]
Template-Free Fabrication of Single Atom Fe-Based Cathodes Unlock High-Performing Anion-Exchange Membrane Fuel Cells.

Adv Sci (Weinh). 2025-7-17

[8]
Transforming Single-Atom Site to Dual-Atom Site in Fe-N-C Catalysts: A Universal Strategy for Enhancing Durability in Proton-Exchange Membrane Fuel Cells.

Angew Chem Int Ed Engl. 2025-6-21

[9]
Dual-regulated cascade catalysis via spatial synergy and electronic coupling for efficient oxygen reduction reaction.

J Colloid Interface Sci. 2025-12

[10]
Strategic Secondary Coordination Implantation Towards Efficient and Stable Fe─N─C Electrocatalysts for the Oxygen Reduction Reaction in PEMFCs.

Angew Chem Int Ed Engl. 2025-8-11

本文引用的文献

[1]
Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode.

J Phys Chem B. 2004-11-18

[2]
Manipulating the Electronic Properties of an Fe Single Atom Catalyst via Secondary Coordination Sphere Engineering to Provide Enhanced Oxygen Electrocatalytic Activity in Zinc-Air Batteries.

Adv Mater. 2024-11

[3]
Tailoring Oxygen Reduction Reaction Kinetics of Fe-N-C Catalyst via Spin Manipulation for Efficient Zinc-Air Batteries.

Adv Mater. 2024-6

[4]
Ferredoxin-Inspired Design of S-Synergized Fe-Fe Dual-Metal Center Catalysts for Enhanced Electrocatalytic Oxygen Reduction Reaction.

Adv Mater. 2024-5

[5]
F Doping-Induced Multicomponent Synergistic Active Site Construction toward High-Efficiency Bifunctional Oxygen Electrocatalysis for Rechargeable Zn-Air Batteries.

Small. 2024-7

[6]
Avoiding Sabatier's Limitation on Spatially Correlated Pt-Mn Atomic Pair Sites for Oxygen Electroreduction.

J Am Chem Soc. 2023-11-22

[7]
Fe/Co dual metal catalysts modulated by S-ligands for efficient acidic oxygen reduction in PEMFC.

Sci Adv. 2023-6-9

[8]
Direct Oxygen-Oxygen Cleavage through Optimizing Interatomic Distances in Dual Single-atom Electrocatalysts for Efficient Oxygen Reduction Reaction.

Angew Chem Int Ed Engl. 2023-4-17

[9]
Boosting Oxygen Electrocatalytic Activity of Fe-N-C Catalysts by Phosphorus Incorporation.

J Am Chem Soc. 2023-2-15

[10]
Isolated Fe-Co heteronuclear diatomic sites as efficient bifunctional catalysts for high-performance lithium-sulfur batteries.

Nat Commun. 2023-1-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索